
ii AD-A260" 004 ' ' ' ' "•
I 1111Il 111 I!i I~' Ii! l~ 'ITECHNICAL REPORT E-23

DESIGN OF FIXED-FACILITY MULTISPECTRAL
i r CAMOUFLAGE NETTING SUPPORT SYSTEMS

by

James W. Epps, Marion W. Corey

Department of Civil Engineering
Mississippi State University

Mississippi State, Mississippi 39762

-I U
m i

• ,,• • • '•F
ina l R e p o rt

Approved For Public Release; Distribution Is Unlimited

0, 93-00659

I WI iBU• I UI• " ' 6(• J Prepared for D E PA R T M EN T O F T H E A R M Y
US Army Corps of Engineers

Washington, DC 20314-1000

Under Contract No. DACA39-90-K-001 1

Monitored by Environmental Laboratory
US AriFy Engineer vvaterways Experiment Station

3909 Halls Ferry Road, Vicksburg, Mississippi 39180-61 99

Destroy this report when no longer needed. Do not return
it to the originator.

The findings in this report are .iot to be construed as an official
Department of the Army position unless so designated

by other authorized documents.

The contents of this report are not to be used for
advertising, publication, or promotional purposes
Citation of trade names does not constitute an
official endorsement or approval of the use of

such commercial products.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
Collection of information, including suggestions for reducing this burden. to Washington Headquarters Services. Directorate for information Operations ýnd Reports., 215 Jefferson
Davis Highway. Suite 1204. Aeingtoi, VA 22202-4302. and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1992 , Final report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Design of Fixed-Facility Multispectral Camouflage Netting Support C DACA39-90-K-001 I
Systems TA CO

6. AUTHOR(S) WU 026
PR P4A162784AT40

James W. Epps
Marion W. Corey

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Department of Civil Engineering
Mississippi State University,
Mississippi State, MS 39762

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS'ES) 10. SPONSORING/ MONITORING

AGENCY REPORT NUMBER

US Army Corps of Engineers, Washington, DC 20314-1000
US Army Engineer Waterways Experiment Station Technical Report EL-92-34

Environmental Laboratory
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

I1. SUPPLEMENTARY NOTES

Available from National Technical Information Services, 5285 Port Royal Road, Springfield, VA 22161.

IZa. DISTRIBUTION (AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This study describes a computer model for the design of fixed-facility multispectral camouflage netting
support systems. The model was developed in FORTRAN, and the report provides a detailed description of
the input, edit, and execution procedures. The model considers the typical tension structures theory, the sin-
gle cell loads division, support member characteristics, sag distance, cable types, and description of candi-
date materials with pricing. The model has input/edit routines for pricing data, general site description, and
structure geometry. Characterization of the support members, netting, tension members, and anchor system
is also established in the model. The report includes the program source codes, an example program output,
and the program user guide.

14. SUBJECT TERMS IS. NUMBER OF PAGES

Anchor systems Multispectral Tension members 236
Camouflage Support systems 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURHIbY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED I I
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescrbed by ANSi S'td ?Z39-18
298-102

Acl-. : For

'.V .:.d": ity Coues

Avuil ý:rd/or

Contents Dist SpICJ

Preface ... vi

Conversion Factors, Non-SI to SI Units of Measurement vii

i -Main Program I

2-Data Addressing 18

3-Utility Routines 41

4-Pricing Data 60

5-CAMINP Routine 76

6-DESIGN Routine 100

7-FOOTING Routine 111

8-ANCDES Routine 114

9-OUTPUT Routine 117

1 0-Program Compilation and Linking 137

Appendix A: Program Users Guide Al

Appendix B: DESIGN Routine Formulations B1

Appendix C: Program Source Codes CI

Appendix D: Sample Program Output DI

List of Figures

Figure 1. Camouflage main program logic 2

iii

Figure 2. Camouflage input/edit routine logic 78

Figure 3. A typical tension structure 100

Figure 4. Plan view of a typical tension structure 104

Figure 5. Single cell plan view 106

Figure 6. Single cell load divisions 106

Figure 7. Node number scheme for tension structures 126

Figure B1. Basic plan view dimensions B2

Figure B2. Support member characteristics B2

Figure B3. Tension member sag distance B3

Figure B4. Node types 35

Figure B5. Cable numbering B6

Figure B6. Single cell load triangles B8

Figure B7. Cable types B10

List of Tables

Table 1. Extended Code Decimal Equivalents for Acceptable
CURSOR Movements 45

Table 2. Current Pricing Data File Use Codes and Descriptions 63

Table 3. Input/Edit Data Items for General Site Description Routine . 79

Table 4. Input/Edit Data Items for Structure Geometry Routine 81

Table 5. Input/Edit Data Items for Support Member Characteristics
Routine 85

Table 6. Input/Edit Data items for Netting Characteristics Routine . 88

Table 7. Input/Edit Data Items for Tension member Characteristics

Routine 90

Table 8. Input/Edit Data Items for Anchor Characteristics Routine . . 93

Table Al. Current Pricing Data File Use Codes and Descriptions... A15

iv

Preface

This study was conducted by personnel of the Department of Civil
Engineering at Mississippi State University (MSU), for the U.S. Army
Engineer Waterways Experiment Station (WES), under Contract
No. DACA39-90-K-00 11. The study was conducted as part of Department
of the Army Project No. P4A162784AT40, Task CO, Work Unit 026,
Fixed-Facility CCD Design & Evaluation Technologies, which is spon-
sored by Headquarters, U.S. Army Corps of Engineers (HQUSACE).

The report was prepared by Dr. James W. Epps and Dr. Marion W.
Corey from the Department of Civil Engineering of MSU. Mr. Bartley P.
Durst, Dr. Jonathan C. Duke, Jr., and Mr. Gerardo I. Velazquez of the
WES Camouflage Field Demonstration Team assisted in the preparation of
the report.

The study was conducted under the general supervision of Dr. John
Harrison, Chief, Environmental Laboratory (EL), and Dr. Victor E.
LaGarde III, Chief, Environmental Systems Division (ESD), and under
the direct supervision of Mr. Malcolm P. Keown, Chief, Environmental
Constraint Group (ECG), ESD, and Dr. Jonathan C. Duke, Jr., ECG, Tech-
nical Team Leader of the Camouflage Field Demonstration Team. The
HQUSACE Technical Monitor was Mr. Mike Shama.

At the time of publication of this report, Director of WES was

Dr. Robert W. Whalin. Commander was COL Leonard G. Hassell, EN.

This report should be cited as follows:

Corey, M.W., and Epps, J.W. (1992). "Design of fixed-facility
multispectral camouflage netting support systems," Technical Re-
port EL-92-34, prepared by the Department of Civil Engineering,
Mississippi State University, for U.S. Army Engineer Waterways
Experiment Station, Vicksburg, MS.

V

Conversion Factors, Non-SI to SI
Units of Measurement

Non-SI units of measurement used in this report can be converted to SI
units as follows:

Multiply By To Obtain

degrees (angle) 0.01745329 radians

feet 0.3048 meters

inches 2.54 centimeters

pounds (force) per square foot 47.68026 pascals

pounds (mass) per cubic foot 16.01846 kilograms per cubic meter

vi

1 Main Program

A computer model for the design of fixed-facility multispectral camou-
flage netting support systems was developed by the Department of Civil
Engineering at Mississippi State University for the U.S. Army Engineer
Waterways Experiment Station in Vicksburg, MS. This document is in-
tended to describe the computer model in enough detail that a thorough un-
derstanding of the model can be obtained.

The computer model has four major self-contained program options,
each of which returns control to the main-line routine when completed.
The four program options are as follows: (1) INput, (2) EDit, (3) EXe-
cute, and (4) ENd. The two-character keywords for the program options
are stored in the POP() array and are loaded from DATA/READ state-
ments at program initiation. The general logic of the program is illus-
trated by the flow chart as shown in Figure 1 on the following page.

The initial program activity involves loading the data addresses from a
pre-defined array, NADO, which is defined in the COMMON block. A
complete description of the COMMON block and its contents is provided
in Chapter 2 Data Addressing and Chapter 3 Utility Routines of this re-
port. Following the loading of the data addresses, the main program op-
tion prompt is displayed, and the user is required to provide one of the
four program options. If one of the four options is provided, program exe-
cution continues. If one of the four options is not provided, an error mes-
sage is displayed, and control is returned to the program option prompt.
The source codes for this input are provided below:

100 DIM POP(8) AS STRING*2,BAYS125)

270 DATA "IN","in","ED","ed","2X","ex","EN","en"

290 FOR I-1 TO 8:READ POP(I):?JEXT I

360 REM

370 CLS

430 PRINT:PRINT

440 INPUT "OPTIONS: INPUT, EDIT, EXECUTE OR END (IN/ED/EX/END)";A$

450 FOR IZ-1 TO 8:IF MID$(A$,1,2)=POP(IZ) THEN 480

460 NEXT IZ

410 GOTO 3890

480 IF IZ>6 THEN CLOSE:GOTO 3900

Chapter 1 Main Program

MAJN PROGRAM
I

LOAD ADDRESSEJS
NAD() ARRAY /

INPUT PROJECT NO

PROGRAM r EPIN

E• D L;_d I EDPO

PRICING DATA PRICING DATA PRICING DATA
I I

INITIALIZE LOAD LOAD I

ADDRESSING ADDRESSING ADDRESSING

(CALL CAMINP CALL C AMINP GENERATE DATA FILE
FOR STRUCTURAL

DESIGN ROUTINE
RETURN)RETURN

CALL DESIGN

C&AL FOOTINGI

(CALL ANCIDES)I
CALL OUTPUT

- I
RETURN

Figure 1. Camouflage main program logic

Chapter 1 Main Program

490 REM

3890 PRINT:PRINT AS;" - is an invalid response - try again

":GOTO 370

3900 END

Following the program option input, the user is required to provide a
six-character project name and a one-character revision number. These in-
puts are used to define the file name to which the project data are to be
stored. The project data file name will be as follows:

A:Pxxxxxxy.DAT

where

A: Data storage will automatically occur on the floppy drive

P File name prefix

xxxxxx Six-character project name

y One-character revision number

VAT File extension name

This data file will be defined by the program and created during any
INPUT program option executions. During subsequent program execu-
tions, the data file will be accessed automatically. During the initiation of
an INPUT program operation, the program checks to ensure that the desig-
nated file name does not exist on the floppy disk. If the file name does
exist on the floppy drive, program operation is automatically switched to
an EDIT mode to avoid the loss of data. During the initiation of either an
EDIT or EXEC program operpt;on, the program checks to ensure that the
designated file name exists on the floppy disk. Program execution is not
continued until this condition is satisfied. The source codes that perform
these data inputs and create the project .DAT data file are provided below:

510 PRINT:INPUT "PROJECT NUMBER (SIX DIGIT MAX) ";ESN$

520 IF ESN$-"DIR" OR ESN$-"dir" THEN

522 CALL OUTDIR(DUM$()):CLS

524 GOTO 510

526 ENDIF

530 IF LEN(ESN$)>6 THEN ESN$-ESN$+"0":GOTO 530

540 PRINT:INPUT 'REVISION NUMBER (0 - 9) ";RV$

550 FL$S"A:P"+MID$(ESN$,1,6)+MID$(RV$,i,I)+".DAT"

Input Program Option. When the INPUT program option is selected,
the program will perform five functions, as follows: (1) load the program
pricing data, (2) check to ensure that the specified data file does not exist
and initialize the addressing data, (3) open the necessary addressing data

Chapter 1 Main Program

files, (4) call the CAMINP routine to perform the data input, and (5) return
control to the program option input. Each of these five program functions
will be discussed in detail.

Load Pricing Data. The program pricing data are stored in the
PRICE.LAT data file on the resident (hard) disk. The PRICE.LAT data
file is a random access data file with 130-byte records. The contents of
this data file include the individual material items and their structural/
physical characteristics. The contents and organization of this data file
are described in Chapter 4 Pricing Data and Chapter 3 Utility Routines of
this report. The first data record contains 32 four-byte single precision
numeric values which contain the beginning address of material item use
codes which begin with a blank, the digits zero through nine, and the al-
phabetic characters A through U. The second data record contains the
four-byte beginning addresses of the remainder of the use codes V through
Z and the four-byte number of material data items contained in the file.
The use code beginning addresses are loaded in the BEGAD() array, and
the number of materi.l data items is located in the NMARK variable.
Data records 3-79 each contain 26 five-byte (character) names of the
material items stored in the data file. A total of 2,002 material data items
are allowed in the data file (76 records with 26 items per record). The
five-byte names are stored in the MARKO array, which has been implicit-
ly defined as a five-byte string array in the COMMON. When these data
have been loaded, the field lengths of the 18 material data items are
loaded into the LNGO array. The source codes to perform the loading of
the pricing data are provided below:

610 REM INPUT MODE SPECIFIED

620 OPEN DD$+"PRICE.LAT" AS #5 LEN=130:FIELD #5, 130 AS BG$

630 GET #5,1:FOR I=1 TO 32:JZ=(I-1)*4+I

640 BEGAD(I)=CVS(MID$(BG$,JZ,4)):NEXT I

650 GET #5,2:FOR I=33 TO 37:JZ-(I-33)*4+1

660 BEGAD(I)=CVS(MID$(BG$,JZ,4)):NEXT I:NMARK=CVS(MID$(BG$,21,4))

670 FOR 1=3 TO 79:GET #5,I:IJ=(I-3)*26:FOR JZ=1 TO 26

680 KZ=(JZ-I)*5+1:MARK(IJ+JZ)=MID$(BG$,KZ,5):NEXT JZ:NEXT I

690 REM

700 FOR MZ=1 TO 18:SM=0:IF MZ=1 THEN 720

710 FOR NZ=1 TO MZ-1:SM=SM+LNG(NZ):NEXT NZ

720 FIELD #5, SM AS DUMM$, LNG(MZ) AS PRD$(MZ):NEXT MZ

730 REM

Data File Checking and Addressing Initialization. When the user has
input the desired project name and revision number, the associated data
file is opened and the first 128-byte record read. The first four bytes of
this record contain a single-precision value of the next available record
for data storage in the file. If this value is zero, the data file has not been
defined, and the data addressing is initialized. The input of project data is
then allowed to continue. If this value is not zero, the data file is assumed
to exist, and program operation is switched to EDIT mode. The source

Chapter 1 Main Program

codes to perform the data file checking and addressing initialization are
provided below:

550 FL$="A:P"'MID$(ESN$,.1, 6)+MID$(RV$,i,I)+".DAT"

560 OPEN FL$ AS #1 LEN=128:FIELD #1, 128 AS AA$

570 GET #1,1:NXRC=CVS(MID$(AA$,1,4)):CLOSE #1

580 IF NXRC>0 THEN 960 REM (EDIT OR EXEC MODE ONLY)

600 REM

740 FOR 1=1 TO 31:IREC(I)=0:NEXT I:NXRC=2

Opening Associated Data Files. Three program data files are necessary
for the proper maintenance and storage of the project data. These three
data files are as follows: (1) the PROJECT.DAT file as described above,
(2) the DATA.LOC data file, and (3) the DATA.FLD data file. The last
two data files are described in Chapter 2 Data Addressing of this report.
The DATA.LOC data file is a random-access file of four-byte records
which contain the single-precision screen locations of the individual data
items. The DATA.FLD data file is a random-access file of four-byte re-
cords which contain the single-precision field lengths of the individual
data items. The source codes to define and open these data files are pro-
vided below:

750 FL$-"P"+MID$(ESN$,1,6)+MIDS(RV$,1,1)+".DAT"

760 OPEN DD$+FL$ AS #1 LEN-128:FIELD #1, 128 AS AA$

770 OPEN DD$S"DATA.LOC" AS #2 LEN=4:FIELD #2, 4 AS DL$

780 OPEN DD$+"DATA.FLD" AS #3 LEN=4:FIELD #3, 4 AS DF$

Call CAMINP Routine and Return. The CAMINP Routine will allow
the sequential input of the project data. A complete description of the or-
ganization and function of the routine is provided in Chapter 5 CAMINP
Routine of this report. As each input screen is successfully processed, the
.DAT data file contents and project addressing are updated. At the conclu-
sion of the input, the complete contents of the .DAT data file are copied
from the resident (hard or RAM) disk to the floppy, and control is re-
turnc•! to the program option input.

Edit Program Option. When the EDIT program option is selected,
the program will perform five functions, as follows: (1) load the program
pricing data, (2) check to ensure that the specified data file exists, transfer
the project data from the floppy drive to a designated drive (hard disk or
RAM .- ive), and load the addressing data, (3) open the necessary address-
ing data files, (4) call the CAMINP routine to perform the data editing,
and (5) return control to the program option input. Each of these five pro-
gram furctions will be discussed in detail.

Load Pricing Data. The program pricir:- data are stored in the
PRICE.LAT data file on the resident (hard) disk. The PRICE.LAT data
file is a random access data file with 130-byte records. The contents nf
this data file include the individual material items and their structural/
physical characteristics. The contents and organization of this data file is

Chapter 1 Main Program 5

described in Chapter 3 Utility Routines and Chapter 4 Pricing Data of this
report. The first data record contains 32 four-byte single precision nu-
meric values which contain the beginning address of material item use
codes which begin with a blank, the digits zero through nine, and the al-
phabetic characters A through U. The second data record contains the
four-byte beginning addresses of the remainder of the use codes V through
Z and the four-byte number of material data items contained in the file.
The use code beginning addresses are loaded in the BEGADO array, and
the number of material data items is located in the NMARK variable.
Data records 3-79 each contain 26 five-byte (character) names of the mate-
rial items stored in the data file. A total of 2,002 material data items are
allowed in the data file (76 records with 26 items per record). The five-
byte names are stored in the MARKO array, which has beer implicitly de-
fined as a five-byte string array in the COMMON. When these data have
been loaded, the field lengths of the 18 material data items are loaded into
the LNGO array. The source codes to perform the loadirg of the pricing
data are provided below:

1070 OPEN DD$+"PRICE.LAT" AS #5 LEN=130:FIELD #5, 130 AS BG$

1080 GET #5,1:FOR I=1 TO 32:JZ=(I-1)*4+1

1090 BEGAD(I)=CVS(MID$(BG$,JZ,4)):NEXT I

1100 GET #5,2:FOR I=33 TO 37:JZ=(I-33)*4+1

1110 BEGAD(I)=CVS(MID$(BG$,JZ,4)):NEXT I:NMARK=CVS(MID$(BG$,21,4))

1120 FOR 1-3 TO 79:GET #5,I:IJ=(I-3)*26:FOR JZ=1 TO 26

1130 KZ-(JZ-1)*5+I:MARK(IJ+JZ)=MID$(BG$,KZ,5):NEXT JZ:NEXT I

1140 REM

1150 FOR MZ=1 TO 18:SM=0:IF MZ=1 THEN 1170

1160 FOR NZ=1 TO MZ-1:SM=SM+LNG(NZ):NEXT NZ

1170 FIELD #5, SM AS DUMM$, LNG(MZ) AS PRD$(MZ):NEXT MZ

Data File Checking, Data Transfer, and Addressing Data Loading.
When the user has input the desired project name and revision number, the
associated data file is opened and the first 128-byte record read. The first
four bytes of this record contain a single-precision value of the next avail-
able record for data storage in the file. If this value is zero, the data file
has not been defined, and an error message is displayed. If this value is
not zero, the data file is assumed to exist, and the contents of the data file
are transferred from the floppy drive to the designated disk drive. This
designated disk drive may be either the hard disk or a RAM disk, as speci-
fied from the contents of the file COMFIL (see Chapter 3 Utility Rou-
tines). As this data transfer if being accomplished, the data addressing
array IREC() is loaded. This array contains the beginning record number
of the data for each input/edit screen that will be displayed during the edit
process. The source codes that accomplish these functions are provided
below:

550 FL$="A:P"+MID$(ESN$,1,6)+MID$(RV$,1,1)+".DAT"

560 OPEN FL$ AS #1 LEN=128:FIELD #1, 128 AS AA$

570 GET #1,1:NXRC=CVS(MID$(AA$,1,4)):CLOSE #1

580 IF NXRC>0 THEN 960 REM (EDIT OR EXEC MODE ONLY)

6 Chapter 1 Main Program

590 IF IZ>2 THEN 820

600 REM

The error-handling occurs if the next available record for data storage
(NXRC) is zero, and the EDIT program option has been specified (IZ=3
or 4). The specified data file does not exist and an error message is dis-
played. The user must then repeat the project name and revision number
input to satisfy the input requirements of the EDIT program option. The
source codes for this program function are provided on the following page:

820 COLOR 31,1,1:LOCATE 24,2

830 A$="Project No. \ \ Rev No. \\ does not exist - Press

any key"

840 PRINT USING A$;ESN$,RV$;

850 A$-INKEY$:IF LEN(A$)=0 THEN 850

860 KILL FL$

870 COLOR 15,1,1:CLS:GOTO 370

Once the specified data file has been determined to exist, the data from
that file is transferred to the specified disk drive from the floppy, and the
data addressing loaded to the IRECO array. The source codes to provide
these funtions are provided below:

950 REM

960 FL$="P"+MID$(ESN$,1,6)+MID$(RV$,1,1)+".DAT"

970 OPEN DD$+FL$ AS #1 LEN-I28:FIELD #1, 128 AS AA$

980 OPEN "A:"+FL$ AS #2 LEN-128:FIELD #2, 128 AS BA$

990 GET #2,1:RA$-BA$:NXRC=CVS(MID$(RA$,1,4))

1000 FOR I-1 TO 31:IJ=I*4+1:IREC(I)=CVS(MID$(RA$,IJ,4)):NEXT I

1010 LSET AA$=BA$:PUT #1,1

1020 FOR I=2 TO NXRC-1:GET #2,I:LSET AA$=BA$:PUT #1,I:NEXT

I:CLOSE #2

1030 REM

Opening Associated Data Files. Three program data files are necessary
for the proper maintenance and storage of the project data. These three
data files are as follows: (1) the project .DAT file as described above,
(2) the DATA.LOC data file, and (3) the DATA.FLD data file. The last
two data files are described in Chapter 2 Data Addressing of this report.
The DATA.LOC data file is a random-access file of four-byte records
which contain the single-precision screen locations of the individual data
items. The DATA.FLD data file is a random-access file of four-byte re-
cords which contain the single-precision field lengths of the individual
data items. The source codes to define and open these data files are pro-
vided below:

1040 OPEN DD$+"DATA.LOC" AS #2 LEN=4:FIELD #2, 4 AS DL$

1050 OPE1" DD$+"DATA.FLD" AS #3 LEN=4:FIELD #3, 4 AS DF$

Chapter 1 Main Program 7

Call CAMINP Routine and Return. The CAMINP Routine will allow
the sequential editing of the project data. A complete description of the
organization and function of the routine is provided in Chapter 5 CAMINP
Routine of this report. As each edit screen is successfully processed, the
.DAT data file contents and project addressing are updated. At the conclu-
sion of the input, the complete contents of the .DAT data file are copied
from the resident (hard or RAM) disk to the floppy, and control is re-
turned to the program option input.

Exec Program Option. When the EXEC program option is selected,
the program will perform seven functions, as follows: (1) load the pro-
gram pricing data, (2) check to ensure that the specified data file exists,
transfer the project data from the floppy drive to a designated drive (hard
disk or RAM drive), and load the addressing data, (3) open the necessary
addressing data files, (4) generate the necessary data files for the individ-
ual design routines, (5) sequentially call the DESIGN, FOOTING, and
ANCDES design routines, (6) call the OUTPUT routine, and (7) return
control to the program option input. The first three program functions are
the same as for the EDIT program option and will not be repeated. Each
of the remaining four program functions will be discussed in detail.

Design Routine Data Generation. The next program function of the
EXEC program option is to generate the necessary data for the DESIGN,
FOOTING, and ANCDES design routines. Each of these design routines
will be discussed in Chapters 6, 7, and 8 respectively. The data genera-
tion for each routine, however, follows the same sequence of program op-
erations. These operations are as follows: (1) if necessary, open the
required data file to which the project data are to be written, (2) extract
the necessary data from the specified project, (3) either write the extracted
data to the required data file or pass the extracted data to the design rou-
tine directly, and (4) if necessary, close the required data file to which the
project data were written. The DESIGN routine is written in FORTRAN
and must be SHELLed from the main line routine; therefore, any data
transfer must be accomplished through a sequential data file. Both the
FOOTING and ANCDES routines are written in BASIC, and the data
transfer may be accomplished through the arguments to the CALL state-
ment. The data generation for each routine will be detailed and source
codes provided to illustrate the discussions.

DESIGN Routine Data Generation. The DESIGN routine accepts its
input from a sequential ASCII data file named DESINPUT.DAT. This
data file is opened for output, and sequential write statements will be used
to record the data as required by the routine. Because this data file is se-
quential, the current contents of the file are lost when the file is initially
opened and are replaced by the subsequent write statements. The DE-
SIGN routine requires that the DESINPUT.DAT data file contain the fol-
lowing: one record containing the number of bays to be analyzed,
followed by an additional record for each bay spacing, followed by eight
records containing the remainder of the project data. The generation of
each of these data records is described with the associated source codes.

8 Chapter 1 Main Program

The initial data required involve the bay spacings along the length of
the structure. The bay spacing data were input on the second input screen
and are located in the project data file beginning at record IREC(2). The
variable NAD(2) contains the number of data items contained on the sec-
ond input screen. The GETFLD routine is called to load the field lengths
of the individual data items which are returned in the DUMO array. The
DSKRD routine is called to read the individual data items beginning with
record number IREC(2) and return the data in the DUM$0 string array.
Chapter 3 Utility Routines details the use of the GETFLD and DSKRD
routines to extract data from the project data file. The DUM$() array will
contain 27 (NAD(2)) items when control is returned from the DSKRD rou-
tine. The bay spacings are stored in data items 2 through 21 in a format of
xx @ xxxx.xx where the even data items (2, 4, 6, 8 20) contain a num-
ber of spacings and the odd data items (3, 5, 7, 9 21) contain the bay
spacing. Each of the even (DUM$(IZ)) data items is loaded to a dummy
string A$ which is then passed to the SCAN routine. The SCAN routine is
used to extract the numeric data from the A$ string which contains a sin-
gle number. This number will be returned in the array Vo as the first
value in the array (V(1)). If the number is equal to zero, the field is as-
sumed to have been blank, and the next even data field is examined. If
the number is greater than zero, the number is loaded to the NBY variable,
and the odd field (DUM$(IZ+1)) is loaded to A$ and passed to the SCAN
routine. The bay spacing is returned as the first value in the V0 array
(V(1)). The number of bays variable (NBAY) is incremented by the num-
ber of spacings specified (NBY), and the bay spacings array (BAYSO) is
loaded with the number of bays spacings specified. This sequence of oper-
ations is repeated until all of the even data items from 2 to 21 are ex-
tracted. When the data extraction is completed, the variable NBAY
contains the number of bays specified, and the variable array BAYSO con-
tains the individual bay spacings. The first record written to the
DESINPUT.DAT data file is the number of bay spacings, and an addi-
tional record is written for each bay spacing specified. The associated
source codes to perform these operations are provided below:

1580 OPEN "DESINPUT.DAT" FOR OUTPUT AS #4

1590 REM

1600 REM BAYS AND SPACINGS FROM GEOMETRY DATA

1610 NPR=2 :NLOC-NAD(NPR) :CALL GETFLD (NPR, DUMo)

1620 FREC=IREC(NPR) :CALL DSKRD(FREC,NDUM,DUMo(),DUM$())

1630 NBAY=0:FOR JZ=2 TO 20 STEP 2

1640 A$SDUM$(JZ):CALL SCAN(A$,Vo,NN,BS(),NW):IF V(1)-O THEN 1670

1650 NBY=V(1):A$-DUM$(JZ+1):CALL SCAN(AS,Vo,NN,B$(),NW)

1660 FOR KZ-1 TO NBY:NBAY=NBAY+1:BAYS(NBAY)=V(1):NEXT KZ

1670 NEXT JZ

1680 PRINT #4,USING " ###";NBAY

1690 FOR JZ-1 TO NBAY:PRINT #4,USING " ####.##";BAYS(JZ):NEXT JZ

The next data input required by the DESIGN routine involves the width
of the camouflage structure, the minimum spacing of supports along the
width dimension, height of the support, guy condition of the structure, the

Chapter 1 Main Program

maximum sag allowed, and the maximum displacement error allowed.
These data were also input on the second input screen and are currently
stored in data items 22, 23, 24, 25, 26, and 27 of the DUM$() array. Each
numeric data item is extracted using the SCAN routine as previously dis-
cussed and stored in a program variable, as follows: structure width from
data item 22 in variable SWIDE, minimum spacing from data item 23 in
variable SPACE, support height from data item 24 in variable HTPOL,
maximum sag from data item 26 in variable SAGMX, and maximum dis-
placement error from data item 27 in variable ALLDSP. The guy condi-
tion is from data item 25 and is loaded directly into the string variable
GUY$. The next data record written contains the structure width dimen-
sion. The source codes for this data extraction and file generation are
provided below:

1710 REM LOAD REMAINDER OF ITEMS FROM GEOMETRY DATA

1720 AS-DUM$(22):CALL SCAN(A$,VoNN,B$(),NW):SWIDE=V(1)

1730 A$=DUM$(23):CALL SCAN(A$,Vo,NN,B$(),NW):SPACE=V(1)

1740 A$=DUM$(24):CALL SCAN(A$,Vo,NNB$()',NW):HTPOL=V(1)

1750 GUY$=DUM$(25) :IF MID$(GUYS,1,1)="y" THEN GUY$-"Y"

1760 IF MID$(GUY$,1,1)="n" THEN GUY$="N"

1770 A$=DUM$(26):CALL SCAN(A$,Vo,NN,B$(),NW):SAGMX-V(1)

1775 A$=DUM$(27):CALL SCAN(A$,Vo,NN,B$(),NW):ALLDSP=V(1)

1780 PRINT #4,USING " ####.## ";SWIDE

The next data input required by the DESIGN routine involves the mate-
rial characteristics of the specified support members. These data were pro-
vided on input screens 3 and 4, with as many as 15 (JZ) individual support
members on each screen. With each support member, the following data
are provided: (1) a use indicator (Y/N), (2) a five-character name,
(3) maximum length, (4) allowable strength, (5) modulus of elasticity,
(6) cross-sectional area, (7) moment of inertia, (8) unit cost, and (9) cross-
sectional width. The data contained on the input screens are loaded into
the DUM$0 array, and the use indicator for each item is checked until a
'Y' (or 'y') is found. If no support member was specified on the first
input screen (NPR=3), the data are loaded from the second input screen
(NPR=4). If no support member was specified on either input screen, an
error message is displayed and the execution terminated. This condition
should not occur because the CAMINP routine will force one use indicator
of 'Y' before input is allowed to continue. Each screen contains up to 135
(NLOC) data items (15 members with 9 characteristics per member). The
use indicator (DUM$(IJ+1)) is checked for a 'Y' (or 'y'), and when found,
the following data are loaded: (1) member name POLMK$ from
DUM$(IJ+2), (2) maximum member length POLEN from DUM$(IJ+3),
(3) allowable strength PALLOW from DUM$(IJ+4), (4) modulus of elas-
ticity PMODE from DUM$(IJ+5), (5) cross-sectional area PAREA from
DUM$(IJ+6), (6) moment of inertia PMOMI from DUM$(IJ+7), (7) unit
cost PCOST from DUM$(IJ+8), (8) cross-sectional width CWIDE from
DUM$(IJ+9), and (9) the member description POLDS$ from DUM$(IJ+9).
The next required data record containing the structure height, support
member modulus of elasticity, moment of inertia, cross-section area,

10 Chapter 1 Main Program

allowable strength, cross-sectional width, and minimum spacing in the
width dimension is then written. The source codes for these program oper-
ations are provided on the following page:

1790 NPR-3

1800 CALL GETFLD(NPR,DUMC)) :NLOC=NAD(NPR)*15

1810 FOR JZ=2 TO 15:IJ=(JZ-1)*NAD(NPR)

1820 FOR KZ-1 TO NAD(NPR):DUM(IJ+KZ)=DUM(KZ):NEXT KZ:NEXT JZ

1830 FREC-IREC(NPR) :CALL DSKRD(FREC,NDUM,DUMo(,DUM$())

1840 FOR JZ=1 TO 15:IJ=(JZ-1)*NAD(NPR)

1850 IF DUM$(IJ+1)="Y" OR DUM$(IJ+I)="y" THEN

1860 POLMK$=DUM$ (IJ+2)

1870 A$=DUM$(IJ+3):CALL SCAN(A$,Vo,NN,B$(),NW):POLEN-V(1)

1880 A$-DUM$(IJ+4):CALL SCAN(A$,V(),NN,B$(),NW):PALLOW=V(1)

1890 A$=DUM$(IJ+5):CALL SCAN(AS,Vo,NN,B$(),NW):PMODE=V(1)

1900 A$=DUM$(IJ+6):CALL SCAN(AS,Vo,NN,B$(),NW):PAREA=V(1)

1910 A$-DUM$(IJ+7):CALL SCAN(AS,Vo,NN,B$(),NW):PMOMI-V(1)

1920 A$-DUM$(IJ+8):CALL SCAN(A$,Vo.NN,B$(),NW):PCOST=V(1)

1930 A$=DUM$(IJ+9):CALL SCAN(AS,V(),NN,B$(),NW):CWIDTH=V(1)

1940 POLDS$-DUM$ (IJ+9)

1950 GOTO 2080

1960 ENDIF

1970 NEXT JZ

1980 IF NPR=3 THEN NPR=NPR+1:GOTO 1800

1990 REM

2000 REM PROGRAM ERROR - TERMINATE EXECUTION

2010 B$(1)=" PROGRAM ERROR - Support Member Data Error - Terminate

Execution"

2020 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 2020

2030 LOCATE 24,2:PRINT B$(1);

2040 A$-INKEY$:IF LEN(A$)=0 THEN 2040

2050 COLOR 15,1,1:CLOSE:GOTO 370

2060 REM

2070 REM SUPPORT MEMBER DATA EXTRACTED - CONTINUE WRITING DATA

2080 PRINT #4,USING " ####.## , ";HTPOL;

2090 PRINT #4,USING - ####.## , ";PMODE;

2100 PRINT #4,USING " ####.## ";PMOMI;

2110 PRINT #4,USING " ####.## ";PAREA;

2120 PRINT #4,USING - ####.## ";PALLOW;

2130 PRINT #4,USING " ####.## ";CWIDTH;

2140 PRINT #4,USING " ####.## ";SPACE

2150 REM

The next data input required by the DESIGN routine involves the mate-
rial characteristics of the specified tension members. These data were pro-
vided on input screens 7 and 8, with as many as 15 (JZ) individual tension
members on each screen. With each tension member, the following data
are provided: (1) a use indicator (Y/N), (2) a five-character name, (3) al-
lowable strength, (4) modulus of elasticity, (5) coefficient of thermal ex-
pansion, (6) unit area, (7) unit weight, and (8) unit cost. The data

Chapter 1 Main Program 11

contained on the input screens are loaded into the DUM$0 array, and the
use indicator for each item is checked until a 'Y' (or 'y') is found. If no
support member was specified on the first input screen (NPR=7), the data
are loaded from the second input screen (NPR=8). If no tension member
was specified on either input screen, an error message is displayed and the
execution terminated. This condition should not occur because the
CAMINP routine will force one use indicator of 'Y' before input is al-
lowed to continue. Each screen contains up to 135 (NLOC) data items (15
members with 9 characteristics per member). The use indicator
(DUM$(IJ+I)) is checked for a 'Y' (or 'y'), and when found, the follow-
ing data are loaded: (1) member name CABMK$ from DUM$(IJ+2),
(2) allowable strength CALLOW from DUM$(IJ+3), (3) modulus of elas-
ticity CMODE from DUM$(IJ+4), (4) coefficient of thermal expansion
CTHEX from DUM$(IJ+5), (5) unit area CAREA from DUM$(IJ+6),
(6) unit weight CUNWT from DUM$(IJ+7), (7) unit cost CCOST from
DUM$(IJ+8), and (8) the member description CABDS$ from
DUM$(IJ+9). The next required data record containing the tension mem-
ber modulus of elasticity, unit area, allowable strength, maximum allow-
able sag, and unit weight is then written. The source codes for these
program operations is provided below:

2160 REM EXTRACT DATA FOR TENSION MEMBERS

2170 NPR=7

2180 CALL GETFLD(NPR,DUMo) :NLOC=NAD(NPR)*15

2190 FOR JZ=2 TO 15:IJ=(JZ-1)*NAD(NPR)

2200 FOR KZ=1 TO NAD(NPR):DUM(IJ+KZ)=DUM(KZ):NEXT KZ:NEXT JZ

2210 FREC=IREC(NPR) :CALL DSKRD(FREC,NDUM,DUM() ,DUM$())

2220 FOR JZ-1 TO 15:IJ=(JZ-1)*NAD(NPR)

2230 IF DUM$(IJ+1)="Y" OR DUM$(IJ+1)="y" THEN

2240 CABMK$-DUM$ (IJ+2)

2250 A$=DUM$(IJ+3):CALL SCAN(AS,Vo,NN,B$(),NW):CALLOW=V(1)

2260 A$-DUM$(IJ+4):CALL SCAN(AS,Vo,NN,B$(),NW):CMODE=V(1)

2270 A$=DUM$(IJ+5):CALL SCAN(AS,Vo,NN,B$(),NW):CTHEX=V(1)

2280 A$=DUM$(IJ+6):CALL SCAN(A$,Vo,NN,B$(),NW):CAREA=V(1)

2290 A$SDUM$(IJ+7):CALL SCAN(A$,Vo,NN,B$(),NW):CUNWT=V(1)

2300 A$-DUM$(IJ+8):CALL SCAN(A$,V(),NN,B$(),NW):CCOST-V(1)

2310 CABDS$=DUM$ (IJ+9)

2320 GOTO 2420

2330 ENDIF

2340 NEXT JZ

2350 IF NPR=7 THEN NPR=NPR+I:GOTO 2180

2360 REM

2370 REM PROGRAM ERROR - TERMINATE EXECUTION

2380 B$(1)-" PROGRAM ERROR - Tension Member Data Error - Terminate

Execution"

2390 GOTO 2020

2400 REM

2410 REM TENSION MEMBER DATA EXTRACTED - CONTINUE WRITING DATA

2420 PRINT #4,USING ####.## , ";CMODE;

2430 PRINT #4,USING ####.## , ";CAREA;

12 Chapter 1 Main Program

2440 PRINT #4,USING " ####.## , ";CALLOW;

2450 PRINT #4,USING " ####.## ";SAGMX;

2.60 PRINT #4,USING " ####.## ";CUNWT

The next data input required by the DESIGN routine involves the mate-
rial characteristics of the specified nets. These data were provided on
input screcns 5 and 6, with as many as 15 (JZ) individual netting materials
on each screen. With each net, the following data are provided: (1) a use
indicator (Y/N), (2) a five-character name, (3) unit area, (4) thickness,
(5) unit weight, (6) drag coefficient, and (7) unit cost. The data contained
on the input screens are loaded into the DUM$O array, and the use indica-
tor for each item is checked until a 'Y' (or 'y') is found. If no support
member was specified on the first input screen (NPR=5), the data are
loaded from the second input screen (NPR=6). If no netting material was
specified on either input screen, an error message is displayed and the exe-
cution terminated. This condition should not occur because the CAMINP
routine will force one use indicator of 'Y' before input is allowed to con-
tinue. Each screen contains up to 135 (NLOC) data items (15 members
with 9 characteristics per net). The use indicator (DUM$(IJ+I)) is
checked for a 'Y' (or 'y'), and when found, the following data are loaded:
(1) netting name NETMK$ from DUM$(IJ+2), (2) unit size NSIZE from
DUM$(IJ+3), (3) thickness NTHICK from DUM$(IJ+4), (4) allowable
strength NALLOW from DUM$(IJ+5), (5) unit weight NUNWT from
DUM$(IJ+6), (6) drag coefficient NDRAG from DUM$(IJ+7), (7) unit
cost NCOST from DUM$(IJ+8), and (8) the netting description NETDS$
from DUM$(IJ+9). The source codes that perform the netting data extrac-
tion are provided below:

2480 REM EXTRACT DATA FOR NETTING

2490 NPR-5

2500 CALL GETFLD(NPR,DUMo) :NLOC=NAD(NPR)*15

2510 FOR JZ=2 TO 15:IJ=(JZ-1)*NAD(NPR)

2520 FOR KZ=1 TO NAD(NPR):DUM(IJ+KZ)=DUM(KZ):NEXT KZ:NEXT JZ

2530 FREC=IREC(NPR) :CALL DSKRD(FREC,NDUM,DUM(),DUM$())

2540 FOR JZ-1 TO 15:IJ=(JZ-1)*NAD(NPR)

2550 IF DUM$(IJ+1)-"Y" OR DUM$(IJ+1)="y" THEN

2560 NETMK$-DUM$ (IJ+2)

2570 A$-DUM$(IJ+3):CALL SCAN(AS,Vo,NN,B$(),NW):NSIZE=V(1)

2580 A$=DUM$(IJ+4):CALL SCAN(A$,V(,NN,B$(7,NW):NTHICK-V(1I)

2590 AS-DUMS(IJ+5):CALL SCAN(A$,Vo,NN,B$(),NW):NALLOW=V(1)

2600 A$-DUM$(IJ+6):CALL SCAN(AS,Vo,NN,B$(),NW):NUNWT=V(1)

2610 A$-DUM$(IJ+7):CALL SCAN(A$,Vo,NN,B$(),NW):NDRAG=V(1)

2620 A$-DUM$(IJ+8):CALL SCAN(A$,Vo,NN,B$(),NW):NCOST=V(1)

2630 NETDSS=DUM$ (IJ+9)

2640 GOTO 2740

2650 ENDIF

2660 NEXT JZ

2670 IF NPR=5 THEN NPR=NPR+1:GOTO 2500

2680 REM

2690 REM PROGRAM ERROR - TERMINATE EXECUTION

Chapter 1 Main Program 13

2700 B$(1)=" PROGRAM ERROR - Netting Data Error - Terminate

Execution"

2710 GOTO 2020

The next data input required by the DESIGN routine involves the mate-
rial characteristics of the specified anchors. These data were provided on
input screens 9 and 10, with as many as 15 (JZ) individual anchors on
each screen. With each anchor, the following data are provided: (1) a use
indicator (Y/N), (2) a five-character name, (3) length, (4) allowable
strength, (5) modulus of elasticity, (6) rod diameter, (7) anchor diameter,
and (8) unit cost. The data contained on the input screens are loaded into
the DUM$0 array, and the use indicator for each item is checked until a
'Y' (or 'y') is found. When each anchor specified on the first input screen
(NPR=9) has been checked, the data are loaded from the second input
screen (NPR=10). Each screen contains up to 135 (NLOC) data items
(15 members with 9 characteristics per member). The use indicator
(DUM$(IJ+I)) is checked for a 'Y' (or 'y'), and when found, the anchor
counter NANC is incremented and the following data are loaded: (1) an-
chor name ANCMK$(NANC) from DUM$(IJ+2), (2) length
ANLEN(NANC) from DUM$(IJ+3), (3) allowable strength
ANALL(NANC) from DUM$(IJ+4), (4) helix diameter ANDIA(NANC)
from DUM$(IJ+7), (5) unit cost ACOST(NANC) from DUM$(IJ+8), and
(6) the anchor description ANCDS$(NANC) from DUM$(IJ+9). These an-
chor data are stored in a labeled COMMON to facilitate the data transfer
to the ANCDES routine. The source codes for these data extractions are
provided below:

2730 REM EXTRACT DATA FOR ANCHORS

2740 NPR=9:NANC=0

2750 CALL GETFLD(NPR,DUMo()) :NLOC=NAD(NPR)*15

2760 FOR JZ=2 TO 15:IJ=(JZ-1)*NAD(NPR)

2770 FOR KZ=1 TO NAD(NPR):DUM(IJ+KZ)=DUM(KZ):NEXT KZ:NEXT JZ

2780 FREC=IREC(NPR) :CALL DSKRD(FREC,NDUM,tUMM(),DUM$())

2790 FOR JZ=1 TO 15:IJ=(JZ-1)*NAD(NPR)

2800 IF DUM$(IJ+1)="Y" OR DUM$(IJ+1)="y" THEN

2810 NANC=NANC+1:ANCMK$ (NANC)=DUM$ (IJ+2)

2820 A$=DUM$(IJ+3) :CALL SCAN(A$,Vo,NN,B$(),NW) :ANLEN(NANC)=V(1)

2830 A$=DUM$(IJ+4) :CALL SCAN(AS,Vo,NN,B$(),NW) :ANALL(NANC)=V(1)

2840 A$-DUM$(IJ+7):CALL SCAN(AS,Vo,NN,B$(),NW):ANDIA(NANC)=V(1)

2850 A$-DUM$(IJ+8):CALL SCAN(A$,Vo,NN,B$(),NW):ACOST(NANC)=V(1)

2860 ANCDS$ (NANC)=DUM$ (IJ+9)

2870 ENDIF

2880 NEXT JZ

2890 IF NPR=9 THEN NPR-NPR+1:GOTO 2750

The final data required involve the soil characteristics, design loadings,
and weather data. These data were input on the first input screen and are
located in the project data file beginning at record IREC(1). The variable
NAD(1) contains the number of data items contained on the first input
screen. The GETFLD routine is called to load the field lengths of the

14 Chapter 1 Main Program

individual data items which are returned in the DUMO array. The
DSKRD routine is called to read the individual data items beginning with
record number IREC(1) and return the data in the DUM$O string array.
The DUM$O array will contain 11 (NAD(1)) items when control is re-
turned from the DSKRD routine. The soil cohesion is stored in the first
data item. The value in DUM$(1) is loaded to a dummy string A$ which
is then passed to the SCAN routine. The SCAN routine extracts the nu-
meric value from the A$ string (V(1)) which is then stored in the variable
COH. The remaining data needed are extracted in the same way, as fol-
lows: soil unit weight from DUM$(2) stored in the variable GAMMA, the
soil angle of internal friction in DUM$(3) stored in ANGLE, the diameter
of the bored holes in DUM$(4) stored in BORED, the wind speed, average
sustained speed, and gusting wind speed in DUM$(7), DUM$(8), and
DUM$(9) stored in WINDA, WINDS, and WINDG, and the snow load in
DUM$(10) storeu in SNOW. When these data are extracted, the maxi-
mum wind speed specified is selected for the design wind, and the final
data record required by the DESIGN routine is written. This data record
contains the soil angle of friction, unit weight of the netting, design snow
load, design wind load, maximum allowable displacement error, guy condi-
tion, factor of safety (2.0 assumed), and netting drag coefficient. The as-
sociated source codes to perform these operations are provided below:

2970 NPR=1:CALL GETFLD(NPR,DUMo) :NLOC=NAD(NPR)

2980 FREC-IREC(NPR) :CALL DSKRD(FREC,NDUM,DUM(),DUM$())

2990 A$-DUM$(1):CALL SCAN(A$,Vo,NN,H$(),NW):COH=V(1)

3000 A$SDUM$(2):CALL SCAN(A$,VoNN, B$(),NW):GAMMA=V(1)

3010 A$=DUM$(3):CALL SCAN(AS,Vo,NN,B$(),NW):ANGLE=V(I)

3020 A$-DUM$(4):CALL SCAN(AS,Vo,NN,B$(),NW):BORED=V(1,

3030 A$=DUM$(7):CALL SCAN(A$,Vo,NN,B$(),NW):WINDA-V(i)

3040 A$=DUM$(8):CALL SCAN(A$,Vo,NN,B$(),NW):WINDS=V(i)

3050 A$=DUM$(9):CALL SCAN(AS,VC),NN,B$(),NW):WINDG=V(1)

3060 A$=DUM$(10):CALL SCAN(A$,V(),NN,B$(),NW):SNOW=V(I)

3070 WIND=WINDA:IF WIND<WINDS THEN WIND=WINDS

3080 IF WIND<WINDG THEN WIND-WINDG

3090 REM

3100 REM WRITE REMAINING DATA RECORDS

3110 PRINT #4,USING ####.## ";ANGLE

3120 PRINT #4,USING ##.#### , ";NUNWT;

3130 PRINT #4,USING ####.i# , ";SNOW;

3140 PRINT #4,USING ####.## , ";WIND;

3145 PRINT #4,USING ##.#### ";ALLDSP

3150 PRINT #4,GUY$

3160 FSAFE=2!:PRINT #4,USING " ####.## ";FSAFE

3170 PRINT #4,USING " ##.#### ";NDRAG

3180 CLOSE

Design Routine Calls. When the data extraction is complete, and the re-
quired data file for the DESIGN routine has been generated, each of the
three design routines are called sequentially. The successful completion
of the DESIGN routine is required for the execution of the FOOTING and

Chapter 1 Main Program 15

ANCDES (anchor) design routines. A sequential scratch data file named
DESIGN.DAT is loaded with a zero before the DESIGN routine is exe-
cuted. When the DESIGN routine executes successfully, a one is loaded
into the DESIGN.DAT data file. Before the execution of the FOOTING
and ANCDES routines are attempted, the contents of the DESIGN.DAT
data file are checked to ensure that the DESIGN routine has been executed
successfully. If a zero is read, the program is terminated and no output
produced. If a one is read, the design routine executions are allowed to
continue. The DESIGN routine is SHELLed to with the input file speci-
fied as DESINPUT.DAT. The output of the DESIGN routine is written to
a sequential file named DESOUTPT.DAT. Two items of data from this
data file are required by the FOOTING design routine: the maximum mo-
ment developed at the base of the support membef. and the maximum ten-
sion required in the tension members. These two data items are extracted
from the third and fourth lines of the sequential file DESOUTPT.DAT.
The file is opened for input, the first two lines are read and discarded, and
the next two lines of data are loaded in the dummy string A$ and passed to
the SCAN routine. The maximum moment MAXMOM is extracted from
the first line of data and converted to foot-pounds. The maximum tension
MAXTEN is extracted from the second line of data. The FOOTING rou-
tine is called with the required data passed through the arguments of the
subroutine CALL statement. If anchor data have been provided (NANC
greater than 0) and a guyed condition specified (GUY$=Y), the ANCDES
routine is called and the required data passed through the arguments of the
subroutine CALL statement. The source codes for these program func-
tions are provided below:

3250 OPEN "DESIGN.DAT" FOR OUTPUT AS #1:ZERO=O

3255 PRINT #1, ZERO:CLOSE #1

3260 SHELL "DESIGN < DESINPUT.DAT"

3270 OPEN "DESIGN.DAT" FOR INPUT AS #1:INPUT #1, ZERO:CLOSE #1

3280 IF ZERO<=0 THEN

3290 A$-INKEY$:IF LEN(A$)=0 THEN 3290

3300 GOTO 3800

3310 ENDIF

3320 REM

3330 REM RESULTS FROM DESIGN - DESIGN FOUNDATION FOR POLES

3370 OPEN "DESOUTPT.DAT" FOR INPUT AS #1

3380 LINE INPUT #I, AS:LINE INPUT #1,A$

3390 LINE INPUT #1,A$:CALL SCAN(A$,Vo,NN,B$(),NW):MAXMOM=V(1)/12!

3400 LINE INPUT #1,AS:CALL SCAN(AS,Vo,NN,B$(),NW):MAXTEN-V(1)

3410 CLOSE

3420 CALL FOOTING (GAMMA, COH, ANGLE, BORED, HTPOL, MAXMOM)

3430 REM

3440 REM CHECK SELECTED ANCHORS FOR MAX GUY TENSION

3450 IF NANC=0 OR GUY$="N" THEN 3530

3460 CALL ANCDES (GAMMA,COH,ANGLE,MAXTEN)

3470 REM

16 Chapter 1 Main Program

OUTPUT Routine. The OUTPUT routine is called when each of the
three design routines has successfully completed its output. The output is
written to a sequential data file and consists of the following: (1) each of
the input screens, (2) graphic description of the final structural design,
(3) descriptive summary of the structural design, (4) descriptive summary
of the footing design, (5) descriptive summary of the anchoring design, if
specified, and (6) a descriptive cost summary for the entire structure.
When the output is complete, the user is allowed the opportunity to:
(1) browse the output on the display, (2) print the contents of the output
file, (3) copy the contents of the output file to floppy disk, or (4) erase the
sequential data file from the hard disk. When the output options are com-
pleted, the scratch data files (.DAT) are erased from the hard disk, and
control is returned to the original program prompt. The source codes that
perform the output functions are provided below:

3480 REM DESIGN COMPLETE - GRAPHIC PROGRAM OUTPUT

3490 OPEN "DEVICES" FOR INPUT AS #1:NLINE=1

3500 LINE INPUT #1, AS:CALL SCAN(A$,V(,NN,BS(),NW)

3510 IF B$(1)="PRINT" THEN PPORT=V(1) :PMODEL=V(2) :PSCALE=V(3)

3520 IF B$(1)-"SCREEN" THEN SPORT-V(1):SMODEL-V'2):PSCALE-V(3)

3530 IF NLINE-1 THEN NLINE=2:GOTO 3500

3540 CLOSE #1

3550 REM

3560 REM INPUT DATA FOR DRAW PROGRAM

3570 OPEN "CARRY.DAT" FOR OUTPUT AS #1

3580 XPAGE=9!:YPAGE-7!:C$-" #### #### #####.### #####.###"

3590 PRINT #1, USING C$;SPORT,SMODEL,XPAGE,YPAGE

3600 D$-" PROJECT: \ \ REV: \\ CAMOUFLAGE DESIGN PLAN

VIEW"

3610 PRINT #1, USING DS;ESN$,RV$:CLOSE #1

3620 SHELL "DRAW < CARRY.DAT"

3640 COLOR 15,1,1:CLS:LOCATE 24,2:INPUT "Plot to Printer

(Y/N) ";AS

3650 IF AS-"y" THEN A$="Y"

3660 IF A$-"Y" THEN

3670 XPAGE=10!:IF PSCALE>I! THEN XPAGE=13!

3680 YPAGE-7.5:IF PSCALE>l! THEN YPAGE=10!

3690 OPEN "CARRY.DAT" FOR OUTPUT AS #1

3700 PRINT #1, USING C$;PPORT,PMODEL,XPAGE,YPAGE

3710 PRINT #1, USING D$;ESN$,RV$:CLOSE #1

3720 SHELL "DRAW < CARRY.DAT"

3730 ENDIF

3740 KILL "CARRY.DAT"

3750 REM

3760 REM PROGRAM OUTPUT TO DISK FILE

3770 CALL DROUTPUT(ESN$,RV$,DD$,DLNUM,PGVER$)

3780 PL$=LEFT$ (FL$,LEN(FLS)-3)+"PRT"

3790 A$-"UTILITY "+PL$:SHELL AS

3800 KILL "DESICN.DAT":KILL FL$

3810 GOTO 370

Chapter 1 Main Program 17

2 Data Addressing

The organization, transfer, and storage of the program data are ac-
complished by several means. Primary data items are stored in both un-
labeled and labeled COMMON statements. This allows the data to be
available in subroutines without having to be passed as arguments in the
subroutine CALL statements. Primary data storage is accomplished in ran-
dom access files which are transferred to and from a floppy disk. The con-
tents of this chapter are intended to provide a detailed description of these
various data transfer, storage, and retrieval mechanisms. In addition, the
organization of the primary project data file and the auxiliary data files
needed for the storage/retrieval of these project data is also described.
Two library routines, DSKRD and DSKWRT, which are used to retrieve or
store the project data are also described.

Unlabeled and Labeled COMMON. The primary data transfer
mechanism between both program and library routines is through un-
labeled and labeled COMMON. ProBASIC allows the usage of a single
unlabeled COMMON block and a maximum of 125 labeled COMMON
blocks. When used in conjunction with a DIMension statement, both
numeric and string arrays may be stored in both unlabeled and labeled
COMMON blocks.

Unlabeled COMMON Block. The unlabeled COMMON block contains
the basic numeric and string data required for all phases of program opera-
tion. The COMMON block is established at the beginning of each major
program module and consists of two DIMension statements followed by
the COMMON SHARED statement. The DIMension statements define
the maximum space required by the variables included in the COMMON
block, and the COMMON SHARED statement defines the order of the in-
dividual data in the COMMON block. These three statements must be the
first st.tements of any major program module and are provided below:

50 DIM LPTS(135) ,FLD(135),VAR$(135),IREC(31),NAD(31),PRD$ (18)

60 DIM BEGAD(37),MARK(2002) AS STRING*5

70 COMMON SHARED NLOCNAD(0,F'LD(,LPTS(,IREC(,

NKARK,BEGAD(,DL$,DF$,AA$,VAR$() ,PRD$(),MARK() AS STRING*5

18 Chapter 2 Data Addressing

The first three variable arrays, LPTSO, FLDO, and VAR$(), are used in
the display of the various input screens during the program operation.
The LPTSO array is a single precision numeric array used to store up to
135 values of data field locations on a single screen. The FLDO array is a
single precision numeric array used to store up to 135 values of data field
lengths on a single screen. The VAR$O array is a string array used to
store the input for up to 135 data fields. All data input are stored initially
as string data to facilitate the storage and/or retrieval of the data. The
IREC0 and NADO arrays are single precision arrays containing the begin-
ning record number of the data in the project data file and number of input
data items, respectively, for up to 31 input screens. The PRD$O array is a
string array which contains the 18 individual characteristics of each
material data item in the pricing data file. The BEGADO and MARK() ar-
rays are also associated with the pricing data file. The BEGADO array is
a single precision array containing the beginning record number in the
pricing data file for each of the 37 acceptable material use codes (blank,
numbers 0-9 and characters A-Z). The MARKO array is a string array
which contains a maximum of 2,002 five-character names of the material
items contained in the pricing data file. A complete description of these
variable names with the organization of this data file is presented in Chap-
ter 4 Pricing Data.

The organization of the data in the unlabeled COMMON block is
presented in the COMMON SHARED statement. NLOC is a single
precision variable which contains the total number of data items as-
sociated with any one of the input screens. This variable must be defined
or calculated before any of the associated program or library subroutines
requiring this variable may be used. The NAD0 array contains the single
precision values representing the number of data items associated with a
maximum of 31 input screens. The FLD0 array contains 135 single
precision data field lengths. The LPTSO array contains 135 single
precision data field locations. The IRECO array contains single precision
values which represent the beginning record number in the project data
file for the data contained on each of the 31 input screens. The data in
this array are defined during the initial input of the project data and are
stored in the first record of the project data file. The first 128-byte
record of the project data file will provide the storage of 32 four-byte
single precision numbers, and that record will always contalih the next
available record number for storage (NXRC) and the 31 values of the
IRECO array. During the input/edit program operations, these values are
defined and/or updated; and, at the conclusion of each input screen, the
first data record of the project data file is rewritten. NMARK is a single
precision value of the number of material data items contained in the pric-
ing data file. The BEGAD0 array contains 37 single precision values rep-
resenting the beginning record number in the pricing data file for each of
the 37 acceptable material use codes. DL$ is a string variable to be used
only for the extractioi of the data field locations. DF$ is a string variable
to be used only for the extraction of the data field lengths. AA$ is a
string variable to be used only for the contents of a single record of data
from the project data file. The VAR$() array contains up to 135 strings

Chapter 2 Data Address'ng 19

representing the data input on any one of the input screens. The PRD$()
array contains the 18 characteristics of any one of the material data items
contained in the pricing data file. The MARKO string array contains the
five-character names of a maximum of 2,002 material data items con-
tained in the pricing data file.

Labeled COMMON Blocks. Five labeled COMMON blocks are cur-
rently being used by the program. The COMMON SHARED statements
and associated DIMension statements are provided below. The
GENERAL block contains the variable names that are used throughout the
program and is used to simply conserve the memory requirements of the
program. The other labeled COMMON blocks, POLES, CABLES, NE fS,
and ANCHORS, are used to store the critical material data that are
specified for the project being currently executed so that these data may
be passed to the design and output routines without having to be read from
the project data file more than once.

The GENERAL-labeled COMMON contains five DIMensioned vari-
ables which are used in all of the program functions. Because these vari-
ables are stored in labeled COMMON, they may be passed as the
arguments of program library subroutines. Unlabeled COMMON vari-
ables may not be passed as the arguments of library subroutines. The
DUMO array contains 135 single precision values and is used to store the
field lengths of the input screen data. The DUM$() array contains 135
string values and is used to return the values of the individual data items
of an input screen. The VO array contains 20 single precision values and
is used to store the numeric data which are extracted from an input string
using the SCAN library routine. The B$O array contains 20 string values
and is used to store the individual string data items extracted from an
input string using the SCAN library routine. The LNGO array contains
the 18 single precision field lengths of the individual characteristics of
each material item stored in the pricing data file. The source codes for the
GENERAL-labeled COMMON are provided below:

80 DIM DUM(135),DUM$(135),V(20),B$(20),LNG(18)

90 COMMON SHARED/GENERAL/DUM(oV(, LNG) ,LDUM$ () ,BS (),AS

The ANCHORS unlabeled COMMON contains seven variables which
contain the mater;al characteristics of a maximum of five anchors to be
used in the design routines. The variable NANC is the single precision
number of anchors whose characteristics are being stored. The
ANCMK$0 array contains five five-character names of the anchors. The
ANLEN(array contains five single precision lengths (feet) of the
anchors. The ANALL0 array contains five single precision allowable
strengths (kips/square inch) of the anchors. The ANDIA0 array contains
five single precision helix diameters (inches) of the anchors. The
ACOST() array contains five single precision unit costs (dollars/each) of
the anchors. The ANCDS$() array contains five 15-character descriptions
of the anchors. The source codes for the ANCHORS-labeled COMMON
are provided below:

20 Chapter 2 Data Addressing

100 DIM ANCMK$(5),ANLEN(5),ANALL(5),ANDIA(5),ACOST(5),ANCDS$(5)

110 COMMON SHARED/ANCHORS/NANC,ANCMK$(),ANLEN(),ANALL(),

ANDIA () *ACOST o), ANCDS$ ()

The remaining three labeled COMMON blocks are used to store the
material data for a single support member (pole), a single tension member
(cable), and a single netting material that will be analyzed in the design
routines. The POLES-labeled COMMON contains POLEN, the length of
the selected support member (feet); PCOST, the unit cost of the support
member (dollars/each); POLMK$, the five-character name of the support
member; and POLDS$, a 15-character description of the support member.
The CABLES-labeled COMMON contains CCOST, the unit cost of the
tension member (dollars/foot); CABMK$, the five-character name of the
tension member; and CABDS$, a 15-character description of the tension
member. The NETS-labeled COMMON contains NSIZE, the unit size of
each piece of netting (square feet); NCOST, the unit cost of the netting
(dollars/square foot); NETMK$, the five-character name of the netting;
and NETDS$, a 15-character description of the netting. The source codes
for these three labeled COMMON blocks are provided below:

120 COMMON SHARED/POLES/POLEN, PCOST, POLMK$, POLDS.$

130 COMMON SHARED/CABLES/CCOST, CABMK$, CABDS$

140 COMMON SHARED/NETS/NSIZE,NCOST,NETMK$,NETDS$

Auxiliary Data Files. Three auxiliary data files are needed for the pro-
gram data storage/retrieval functions. These three data files are random
access files and are named DATA.ADD, DATA.LOC, and DATA.FLD.
These three data files must exist on the specified (DD$) disk drive.
These data files can be created by executing the CAMOBLDR program
(source codes provided at the end of this chapter). The contents, organiza-
tion, and use of each of the three data files are described below.

DATA.ADD Data File. The DATA.ADD file is a random access data
file which contains a single 128-byte record. This 128-byte record can
contain up to 32 four-byte single-precision numbers. The current version
of the Camouflage Program allows a maximum of 31 values which are the
number of data items contained on 31 input screens. The current version
of the program contains 10 input screens; therefore, the first 10 data
values are defined, and the remaining 21 data items are zero. The current
10 numeric values are 11, 27, 9, 9, 9, 9, 9, 9, 9, and 9, representing 11
data items on the first input screen, 27 data items on the second input
screen, and so on to 9 data items on the tenth input screen. The total of
these values (110) represents the total number of data items that could be
provided for any project input. At the beginning of each major program
module, this file is opened, 31 numeric values are extracted from the first
record, and these values are stored in the NAD() array. The NAD() array
is listed in the blank COMMON statement and is therefore available to
every subroutine in the program module. A sample of the source codes
which accomplish the loading of these data are provided below:

Chapter 2 Data Addressing 21

330 OPEN DD$+"DATA.ADD" AS #1 LEN=128:FIELD #1, 128 AS DA$

340 GET #1,1:RA$-DA$:FOR 1=1 TO 31:IJ=(I-l)*4+1

350 NAD(I)-CVS(MID$(RA$,IJ,4)):NEXT I:CLOSE #1

From the source codes shown above, the file is OPENed and identified
as a random access data file with 128-byte records. The first record is
read, stored in the string variable DA$, and transferred to the string vari-
able RA$. From that string, the individual numeric data values are ex-
tracted from each four-byte section of the string. The variable counter I is
used to calculate the beginning character (IJ) of each four-byte string.
The numeric value is extracted by the CVS (convert to single precision
number) function and stored in the Ith location in the NADO array.

DATA.LOC Data File. The DATA.LOC file is a random access data
file which contains four-byte records. Each four-byte record contains a
single precision numeric value which represents the screen location of a
particular data item. The screen location is a four-digit number in which
the first two digits represent the row (01-24) and the last two digits repre-
sent the column (01-80) for the beginning of the data field for the data
item. For example, a data field which begins at a screen location of row
16 and column 46 would be indicated by a numeric value of 1646. The
beginning location for every data field on each of the ten input screens is
stored on sequential four-byte records in the data file. For example, the
first input screen provides for 11 data items, so the first 11 values of this
data file contain the beginning field locations for these I I data items. The
next 27 values contain the beginning field locations for the 27 data items
which can be input on screen number two, and so on to the last nine
values are the beginning data fields for the nine data items on input screen
number 10. For the current version of the program, the contents of this
data file are 110 four-byte single precision values.

Before any of the ten input screens may be displayed, the beginning
locations of the data fields on the input screen to be displayed must be ex-
tracted from the DATA.LOC data file. These data are extracted with the
GETLOC subroutine which is available in the program library (see Chap-
ter 3 on Utility Routines). The GETLOC subroutine source codes are
provided below.

190 SUB GETLOC(IP,DUM(1))

200 NST=0:IF IP=1 THEN 220

210 FOR I=1 TO IP-1:NST=NST+NAD(I):NEXT I

220 IEN-NST+NAD(IP):NO=0:FOR I-NST+1 TO IEN:NO=NO+1

230 GET #2,I:DUM(NO)=CVS(DL$):NEXT I

240 END SUB

The GETLOC subroutine has two arguments: the number of the
screen to be displayed (IP) and an array in which the screen locations are
returned (DUM()). The first record to be read is calculated by summing
the number of data items (NAD()) associated with the preceding input
screens (IP-1). The variable NST contains this sum and represents the

22 Chapter 2 Data Addressing

record number containing the field location of the last data item on the
input screen immediately preceding input screen number IP. The data
field locations for input screen number IP are located in record numbers
NST+I through NST+NAD(IP). Each four-byte record is read, and the
numeric value is extracted by the CVS function and stored in the proper
address (NO) of the DUMO array.

Once the field location data are returned from the GETLOC sub-
routine, the contents of the argument array (DUMO) can be transferred to
the blank COMMON array, LPTS0, and used by any other program or
library routine. In the case where the screen locations are repetitive (the
column locations are the same for each row of input), only the first row of
values are provided in the NADO array, and the remainder of the screen
locations are calculated. Examples of the source codes which accomplish
the data acquisition for both cases are provided below:

1130 KEYZ=0:NPR=2:NLOC-NAD (NPR) :CALL GETLOC(NPR, DUMo)

1140 FOR I=1 TO NAD(NPR):LPTS(I)=DUM(I):NEXT I

In the first example, the field locations for the second input screen
(NPR=2) are desired. The NAD(2) value is 27, and the total number of
data fields (NLOC) is also 27. The GETLOC subroutine is called, and 27
values are returned in the DUMO array. These 27 values are then stored
in the LPTS(array.

2080 KEYZ=0:NPR=3:NYES-0

2090 CALL GETLOC(NPR,DUMo) :NLOC=NAD(NPR)*15

2100 FOR I=1 TO NAD(NPR):LPTS(I)=DUM(I):NEXT I

2120 FOR I=2 TO 15:IJ=(I-1)*NAD(NPR):FOR J=1 TO NAD(NPR)

2130 LPTS(IJ+J)=LPTS(J)+100*(I-1)

2140 NEXT J:NEXT I

In the second example, the field locations for the third input screen
(NPR=3) are desired. The NAD(3) value is 9, which for this case repre-
sents nine data items per line. A total of 15 lines of input are allowed,
which results in a total number of data items (NLOC) of 135
(NAD(NPR)* 15). The GETLOC subroutine is called, and the nine screen
locations for the first row are returned in the DUM(array. These nine
values are then stored in the LPTS0 array. The field locations for the
remaining 14 rows are calculated by adding 100 to the corresponding field
location of the preceding row.

DATA.FLD Data File. The DATA.FLD file is a random access data file
which contains four-byte records. Each four-byte record contains a single
precision numeric value which represents the length of the input field for
a particular data item. The field length for every data item on each of the
ten input screens is stored on sequential four-byte records in the data file.
For example, the first input screen provides for 11 data items, so the first
11 values of this data file contain the field lengths for these 11 data items.
(The next value contains the field lengths for the 27 data items which can

Chapter 2 Data Addressing 23

be input on screen number two, and so on to the last nine values are the
field lengths for the nine data items on input screen number 10.) For the
current version of the program, the contents of this data file are 110 four-
byte single precision values.

Before any of the ten input screens may be displayed, the field lengths
of each data item on the input screen to be displayed must be extracted
from the DATA.FLD data file. These data are extracted with the
GETFLD subroutine which is available in the program library (see Chap-
ter 3 on Utility Routines). The GETFLD subroutine source codes are
provided below.

250 SUB GETFLD(IP,DUM(1))

260 NST=0:IF IP=1 THEN 280

270 FOR I=1 TO IP-I:NST=NST+NAD(I):NEXT I

280 IEN=NST+NAD(IP):NO=0:FOR I=NST+l TO IEN:NO=NO+I

290 GET #3,I:DUM(NO)=CVS(DF$):NEXT I

300 END SUB

The GETFLD subroutine has two arguments: the number of the screen
to be displayed (IP) and an array in which the screen field lengths are
returned (DUM(). The first record to be read is calculated by summing
the number of data items (NADO) associated with the preceding input
screens (IP-1). The variable NST contains this sum and represents the
record number containing the field length of the last data item on the input
screen immediately preceding input screen number IP. The data field
lengths for input screen number IP are located in record numbers NST+ 1
through NST+NAD(IP). Each four-byte record is read, and the numeric
value is extracted by the CVS function and stored in the proper address
(NO) of the DUMO array.

Once the field length data are returned from the GETFLD routine, the
contents of the argument array (DUMO) can be transferred to the blank
COMMON array, FLD0, and used by any other program or library
routine. In the case where the screen field lengths are repetitive (the field
lengths are the same for each row of input), only the first row of values
are provided in the FLD0 array, and the remainder of the screen field
lengths are duplicated from the first row of values. Examples of the
source codes which accomplish the data acquisition for both cases are
provided below:

1130 KEYZ=0:NPR=2 :NLOC=NAD (NPR)

1150 CALL GETFLD(NPR,DUM())

1160 FOR I=1 TO NAD(NPR):FLD(I)=DUM(I):NEXT I

In the first example, the field locations for the second input screen
(NPR=2) are desired. The NAD(2) value is 27, and the total number of
data fields (NLOC) is also 27. The GETLOC subroutine is called, and 27
values are returned in the DUM() array. These 27 values are then stored
in the FLD() array.

24 Chapter 2 Data Addressing

2080 KEYZ=O:NPR=3:NYES=0

2090 NLOC=NAD(NPR)*15

2110 CALL GETFLD(NPR,DUMo)

2115 FOR I-1 TO NAD(NPR):FLD(I)-DUM(I):NEXT I

2120 FOR I12 TO 15:IJ=(I-1)*NAD(NPR):FOR J=1 TO NAD(NPR)

2130 DUM(IJ+J)=DUM(J) :FLD(IJ+J)=DUM(J)

2140 NEXT J:NEXT I

In the second example, the field lengths for the third input screen
(NPR=3) are desired. The NAD(3) value is 9, which for this case repre-
sents nine data items per line. A total of 15 lines of input are allowed
which results in a total number of data items (NLOQC) of 135
(NAD(NPR)* 15). The GETFLD subroutine is called, and the nine screen
field lengths for the first row are returned in the DUMO array. These nine
values are then stored in the FLD0 array. The field lengths for the remain-
ing 14 rows are simply duplicated from the first row.

Project Data File Organization. The input data for a project are
stored in a single random access file containing 128-byte records. The
data file name will be composed of the project name and revision number
as follows:

PxxxxxxY.DAT

where

P File name prefix character

xxxxxx Six-character project name

Y One-character revision number

DAT File extension name

Before any program function is attempted, the user will be required to
input the desired project name and revision number. For an INput pro-
gram function, the data file is created on the specified (DD$) disk drive.
For any other program function, the data file is assumed to exist on the
"A" (floppy) disk drive, and the contents of the file are copied from the
floppy disk to the specified disk drive. At the conclusion of each program
function, the contents of the data file are copied from the specified disk
drive to the floppy disk drive, and the file on the specified disk drive is
erased (KILLed).

The data from each input screen are written in the project data file al-
ways beginning on a record boundary. In addition, no individual data item
is "split" between two consecutive records. If the remaining space of the
current record is not sufficient for an individual data item, the current rec-
ord is written, and that data item is stored at the beginning of the next rec-
ord. This method of storing the data always results in "unused" space at

Chapter 2 Data Addressing 25

the end of the 128-byte records, resulting in a larger file size. Data
retrieval, however, is greatly facilitated by storing the data in this manner.
The first record of each project data file will always contain the same
data. The next available record number for writing, NXRC, is a single
precision value stored in the first four bytes of that first record. The
remaining 124 bytes of the record contain the 31 four-byte single
precision values of the IREC0 array, the beginning record number of the
data for up to 31 input screens of data. The data for the first record are in-
itialized during an INput program function and are updated and written in
the first record after each input screen is successfully completed. The
remaining records of the project data file contain the individual data items
from each input screen, each beginning on a record boundary. An ex-
ample of how these data are updated and written to the data file is il-
lustrated by the source codes provided below:

940 FREC=IREC(NPR):IF FREC-0 THEN FREC=NXRC

950 CALL DSKWRT(FREC)

955 IF IREC(NPR)=0 THEN IREC(NPR)=NXRC:NXRC=FREC+1

960 A$=MKS$(NXRC):FOR I=1 TO 31:A$=A$+MKS$(IREC(I)):NEXT I

970 LSET AA$=A$:PUT #1,1

The beginning record number for the current input screen (NPR) is
loaded from the IRECO array. If no data have been previously input for
the current screen, the corresponding value in the IRECO array is zero and
the "next available record" (NXRC) is loaded as the first record number to
be written (FREC). The DSKWRT subroutine is called to write the in-
dividual data items from the current screen to the project data file begin-
ning at record number FREC. If more than one record is required for the
screen data, the current record count will be maintained in FREC by the
DSKWRT routine. When the data have been written to the project data
file, control is returned from the DSKWRT routine, and FREC will con-
tain the number of the last record written. If the data were written for the
first time, the beginning record number in the IRECO array would be
zero. If this is the case, IREC(NPR) is loaded with NXRC, the beginning
record number of the current data and NXRC is then updated to FREC+ 1,
the next available record number for writing. If the data had previously
been written, and had been simply updated, neither of these values would
be changed. After these updates have been accomplished, the first record
is updated with the current value of NXRC and the current contents of the
IRECO array. It is then rewritten to the project data file. A description of
the DSKWRT routine follows and should provide a more detailed descrip-
tion of the project data file contents.

DSKWRT Routine. The DSKWRT routine resides in the program
library of utility routines. As the input for each screen is successfully
completed, this routine is used to store the individual data items from the
screen to the project data file and update the current record being written.
The source codes for the DSKWRT routine are provided and described
below:

26 Chapter 2 Data Addressing

310 SUB DSKWRT(FREC)

320 RA$-MKS$ (NLOC) :LGR=4

330 FOR I-I TO NLOC:NA-FLD(I)-LEN(VAR$(I)):IF NA<=0 THEN 350

340 FOR J-1 TO NA:VAR$(I)=VAR$(I)+" ":NEXT J

350 IF LGR+FLD(I)>128 THEN 370

360 LGR-LGR+FLD(I):RA$-RA$+MID$(VAR$(I),1,FLD(I)):GOTO 410

370 LAD=128-LEN(RA$):IF LAD=0 THEN 390

380 FOR J-1 TO LAD:RASRA+" ":NEXT J

390 LSET AA$-RA$:PUT #1,FREC:FREC=FREC+l

400 RA$-MID$(VAR$(I),i,FLD(I)):LGR=FLD(I)

410 NEXT I:IF LGR-0 THEN 430

420 LAD-128-LGR:FOR I=1 TO LAD:RA$=RA$+" ":NEXT I

425 LSET AA$-RA$:PUT #1,FREC

430 END SUB

When control is initially passed to the subroutine, the number of the
first record to be written is in FREC. NLOC contains the number of data
items to be written, and the FLD0 array contains the field length of each
of the data items. The individual data items are in the VAR$() array. The
total number of data items (NLOC) written is loaded into the first four
bytes of the first record to be written (RA$), and the current length (LGR)
of the record is set to 4. Each data item (VAR$(I)) is then checked to en-
sure that its field length is correct. This function must be done because
the user may have only used a portion", of the field length to input a par-
ticular data item. If this is the case, the remaining portion of the field
length is filled with blanks.

The current record is checked to ensure that a sufficient number of
bytes remain in the RA$ string to store the current data item. If sufficient
space exists (LGR+FLD(I)<=128), the current data item is simply added
to the RA$ string, the length of the RA$ string is increased by the data
item field length (LGR+FLD(I)), and processing of the next data item is
begun. If sufficient space does not exist (LGR+FLD(I)>128), the remain-
ing bytes of the current string (128-LEN(RA$)) are filled with blanks, the
current string RA$ is loaded (LSET) into the reserved string AA$, and the
current record is written to the project data file as record numoer FREC.
FREC is then updated by one (FREC=FREC+I), the current data item is
loaded into the first FLD(I) bytes of the RA$ string, and the current length
of the RA$ string is set to FLD(I). Processing of the next data item is
then ready to begin.

When all of the individual data items have been processed, a check is
made to ensure that the last record has been written. If the length of the
RA$ string LGR is zero, the last data record has been written, and control
is returned to the CALLing routine. If the length of the RA$ string LGR
is not zero, a record has been partially filled, but not yet written. The
remaining length of the string RA$ (128-LGR) is filled with blanks, the
string RA$ loaded (LSET) into the reserved string AA$, and the record is
written to the project data file as record number FREC. Control is then
returned to the CALLing routine.

Chapter 2 Data Addressing 27

DSKRD Routine. The DSKRD routine resides in the program library
of utility routines. Before the input/edit program function for each screen
is begun, this routine is used to retrieve the individual data items from the
project data file. In addition, this routine is also used to retrieve the
project data necessary for the execution of the design routines. The
source codes for the DSKWRT routine are provided and described below:

440 SUB DSKRD (FREC,LOCN,DUM(1),DUM$(1))

450 LGR-4:GET #1,FREC:RA$=AA$:LOCN=CVS(MID$(RA$,1,4))

460 FOR I=1 TO LOCN:IF LGR+DUM(I)>128 THEN 480

470 DUM$(I)=MID$(RA$,LGR+I,DUM(I)):LGR=LGR+DUM(I):GOTO 490

480 FREC-FREC+I:GET #1,FREC:RA$=AA$:LGR=0:GOTO 470

490 NEXT I

500 END SUB

The arguments that must be defined before the routine can be called are
the beginning record to be retrieved (FREC) and the field lengths of the in-
dividual data items (DUM(array). The first record is read and loaded
into the string RA$. The number of data items to be retrieved (LOCN) is
extracted from the first four bytes of the record, and the number of bytes
retrieved from the current record LGR is set to four. The individual data
items are stored in the DUM$O string array. As each data item is pro-
cessed, Lite remaining number of bytes in the current record is checked to
ensure that sufficient space is left for the current data item. If a sufficient
number of bytes remain (LGR+DUM(I)<= 128), the current data item is ex-
tracted from the RA$ from byte LGR+I for DUM(I) bytes, the extracted
value is loaded into the string array DUM$(I), the number of bytes ex-
tracted is incremented by the data item field length (LGR+DUM(I)), and
processing of the next data item is begun. If sufficient space does not
exist in the current record for the data item (LGR+DUM(I)> 128), the cur-
rent record number (FREC) is incremented by one, the next record is read
and loaded into the string RA$, and the current number of bytes extracted
LGR is set to zero. The data item is extracted from the first DUM(I) bytes
of that record and stored in the DUM$(I) string array, the current number
of bytes extracted LGR is incremented by the data item field length, and
processing of the next data item is begun. When all (LOCN) of the data
items have been extracted, control is returned to the CALLing routine.

Addressing Data Summary. The basic data for the each of the ten cur-
rent input screens is provided below. The arrangement of these data is
presented in the order that the screens would appear during an input/edit
program function. For each input screen, the following data are provided:
(a) a description of the screen, (b) the number of addressing data items
(NADO), (c) the total number of data items (NLOC), (d) the total number
of bytes required for storage in the project data file, including four bytes
for the total number of data items, and (e) the number of records required
to write the data in the project data file. For each data item listed, the
screen field location, field length, and a basic description are also pro-
vided. After the contents of each screen are described, the source codes
for the CAMOBLDR program are provided. This stand-alone executable

28
Chapter 2 Data Addressing

is used to generate the data records for the DATA.ADD, DATA.LOC, and
DATA.FLD random access data files.

Input Screen Number 1

Description: Site Specific Project Data

Number of Addressirr Data Items: 11

Total Number of Data Items: 11

Total Number of Bytes Required: 129

Number of Records Required: 2

Data Screen Field
III= Lopafln LAnglth Dascrifln

1 636 10 Soil cohesion (p.f)

2 739 10 Soil unit weight (pcf)

3 858 10 Angle of internal friction (degs)

4 965 10 Boring diameter (inches)

5 1354 10 Average daily rain (in/day)

6 1457 10 Average daily temperature (degs F)

7 1539 10 Average wind speec (mph)

8 1650 10 Sustained average wind speed (mph)

9 1744 10 Gusting wind speed (mph)

10 1854 10 Ice/snow loading (psf)

11 2154 25 General terrain description

Chapter 2 Data Addressing 29

Input Screen Number 2

Description: Camouflage Structure Geornetry

Number of Addressing Data Items: 27

Total Number of Data Items: 27

Total Number of Bytes Required:

Number of Records Required:

Data Screen Field
WItm Loation Lngth Descrition

1 648 10 Total structure length (feet)

2 927 2 Number of bay spacings

3 932 4 Bay spacing (feet)

4 937 2 Number of bay spacings

5 942 4 Bay spacing (feet)

6 947 2 Number of bay spacings

7 952 4 Bay spacing (feet)

8 957 2 Number of bay spacings

9 962 4 Bay spacing (feet)

10 967 2 Number of bay spacings

11 972 4 Bay spacing (feet)

12 1127 2 Number of bay spacings

13 1132 4 Bay spacing (feet)

14 1137 2 Number of bay spacings

15 1142 4 Bay spacing (feet)

16 1147 2 Number of bay spacings

17 1152 4 Bay spacing (feet)

18 1157 2 Number of bay spacings

19 1162 4 Bay spacing (feet)

20 1167 2 Number of bay spacings

21 1172 4 Bay spacing (feet)

22 1447 10 Total structure width (feet)

23 1549 10 Minimum pole spacing (feet)

24 1962 10 Exterior pole height (feet)

25 2048 2 Exterior poles guyed (Y/N)

26 2150 10 Maximum allowable cable sag (feet)

27 2260 10 Allowable displacement error (inch)

30 Chapter 2 Data Addressing

Input Screen Number 3

Description: Support Member Material Characteristics

Number of Addressing Data Items: 9

Total Number of Data Items: 1351

Total Number of Bytes Required: 1054

Number of Records Required: 9

Data Screen Field

Bm Location Length Dehription

1 902 1 Use indicator (Y/N)

2 904 6 Item name

3 911 8 Total length (feet)

4 920 8 Allowable strength (ksi)

5 929 8 Modulus of elasticity (ksi)

6 938 8 Cross-sectional area (sqin)

7 947 8 Moment of inertia (inA4)

8 956 8 Unit price (S/each)

9 965 15 Material description

1 NOTE: Each screen contains 15 rows of data with 9 data items per row.
The screen locations and field elngths shown P.re for the first row.

Screen locations for rows 2 through 15 are calculated by adding 100 to the
screen location of the previous row for each of the data items.

Chapter 2 Data Addressing
31

Input Screen Number 4

Description: Support Member Material Characteristics

Number of Addressing Data Items: 9

Total Number of Data Items: 1351

Total Number of Bytes Required: 1054

Number of Records Required: 9

Data Screen Field
Item Loain Length Description

1 902 1 Use indicator (Y/N)

2 904 6 Item name

3 911 8 Total length (feet)

4 920 8 Allowable strength (ksi)

5 929 8 Modulus of elasticity (ksi)

6 938 8 Cross-sectional area (sqin)

7 947 8 Moment of inertia (inA4)

8 956 8 Unit price ($/each)

9 965 15 Material description

NOTE: Each screen contains 15 rows of data with 9 data items per row.
The screen locations and field lengths shown are for the first row.
Screen locations for rows 2 through 15 are calculated by adding 100 to the

screen location of the previous row for each of the data items.

32 Chapter 2 Data Addressing

Input Screen Number 5

Description: Netting Material Characteristics

Number of Addressing Data Items: 9

Total Number of Data Items: 1351

Total Number of Bytes Required: 1054

Number of Records Required: 9

Data Screen Field
Iem Lain Lengh Descrion

1 902 1 Use indicator (Y/N)

2 904 6 Item name

3 911 8 Unit size (sqft)

4 920 8 Netting thickness (inches)

5 929 8 Allowable strength (ksi)

6 938 8 Unit weight (Ibs/sqft)

7 947 8 Drag coefficient

8 956 8 Unit price ($/sqft)

9 965 15 Material description

I NOTE: Each screen contains 15 rows of data with 9 data items per row.
The screen locations and field lengths shown are for the first row.
Screen locations for rows 2 through 15 are calculated by adding 100 to the

screen location of the previous row for each of the data items.

Chapter 2 Data Addressing 33

Input Screen Number 6

Description: Netting Material Characteristics

Number of Addressing Data Items: 9

Total Number of Data Items: 1351

Total Number of Bytes Required: 1054

Number of Records Required: 9

Data Screen Field
1=tm Lation Lngh Descrition

1 902 1 Use indicator (Y/N)

2 904 6 Item name

3 911 8 Unit size (sqft)

4 920 8 Netting thickness (inches)

5 929 8 Allowable strength (ksi)

6 938 8 Unit weight (lbs/sqft)

7 947 8 Drag coefficient

8 956 8 Unit price ($/sqft)

9 965 15 Material description

I NOTE: Each screen contains 15 rows of data with 9 data items per row.

The screen locations and field lengths shown are for the first row.
Screen locations for rows 2 through 15 are calculated by adding 100 to the

screen location of the previous row for each of the data items.

34 Chapter 2 Data Addressing

Input Screen Number 7

Description: Tension Member Material Characteristics

Number of Addressing Data Items: 9

Total Number of Data Items: 1351

Total Number of Bytes Required: 1054

Number of Records Required: 9

Data Screen Field
Item Lnt Description

1 902 1 Use indicator (Y/N)

2 904 6 Item name

3 911 8 Allowable strength (kips)

4 920 8 Modulus of elasticity (ksi)

5 929 8 Coefficient of thermal expansion

6 938 8 Cross-sectional area (sqin)

7 947 8 Unit weight (lbs/ft)

8 956 8 Unit price ($/foot)

9 965 15 Material description

1 NOTE: Each screen contains 15 rows of data with 9 data items per row.

The screen locations and field lengths shown are for the first row.
Screen locations for rows 2 through 15 are calculated by adding 100 to the

screen location of the previous row for each of the data items.

35
Chapter 2 Data Addressing

Input Screen Number 8

Description: Tension Member Material Characteristics

Number of Addressing Data Items: 9

Total Number of Data Items: 1351

Total Number of Bytes Required: 1054

Number of Records Required: 9

Data Screen Field
1=tm L Lngtscrpton

1 902 1 Use indicator (Y/N)

2 904 6 Item name

3 911 8 Allowable strength (kips)

4 920 8 Modulus of elasticity (ksi)

5 929 8 Coefficient of thermal expansion

6 938 8 Cross-sectional area (sqin)

7 947 8 Unit weight (lbs/ft)

8 956 8 Unit price (S/foot)

9 965 15 Material description

1 NOTE: Each screen contains 15 rows of data with 9 data items per row.
The screen locations and field lengths shown are for the first row.
Screen locations for rows 2 through 15 are calculated by adding 100 to the

screen location of the previous row for each of the data items.

36 Chapter 2 Data Addressing

Input Screen Number 9

Description: Anchor Material Characteristics

Number of Addressing Data Items: 9

Total Number of Data Items: 1351

Total Number of Bytes Required: 1054

Number of Records Required: 9

Data Screen Field
Itm Location Lengh Description

1 902 1 Use indicator (Y/N)

2 904 6 Item name

3 911 8 Rod length (inches)

4 920 8 Allowable strength (ksi)

5 929 8 Modulus of elasticity (ksi)

6 938 8 Rod diameter (inches)

7 947 8 Anchor diameter (inches)

8 956 8 Unit price (S/each)

9 965 15 Material description

I NOTE: Each screen contains 15 rows of data with 9 data items per row.
The screen locations and field lengths shown are for the first row.
Screen locations for rows 2 through 15 are calculated by adding 100 to the

screen location of the previous row for each of the data items.

Chapter 2 Data Addressing 37

Input Screen Number 10

Description: Anchor Material Characteristics

Number of Addressing Data Items: 9

Total Number of Data Items: 1351

Total Number of Bytes Required: 1054

Number of Records Required: 9

Data Screen Field
11tm Loction L DescriLtion

1 902 1 Use indicator (Y/N)

2 904 6 Item name

3 911 8 Rod length (inches)

4 920 8 Allowable strength (ksi)

5 929 8 Modulus of elasticity (ksi)

6 938 8 Rod diameter (inches)

7 947 8 Anchor diameter (inches)

8 956 8 Unit price (S/each)

9 965 15 Material description

1 NOTE: Each screen contains 15 rows of data with 9 data items per row.

The screen locations and field lengths shown are for the first row.
Screen locations for rows 2 through 15 are calculated by adding 100 to the

screen location of the previous row for each of the data items.

38
Chapter 2 Data Addressing

10 REM ADDRESSING ROUTINE CAMOBLDR.BAS

20 REM LATEST REVISIONS 01/16/91

30 DIM NAD(31)

40 OPEN "data.loc" AS #1 LEN-4:FIELD #1, 4 AS DL$

50 OPEN "data.fld" AS #2 LEN-4:FIELD #2, 4 AS DF$

60 OPEN "data.add" AS #3 LEN-128:FIELD #3, 128 AS DA$

70 COLOR 15,1:CLS

80 REM NUMBER OF DATA ITEMS PER SCREEN - NADO) ARRAY

90 DATA 11,27,9,9,9,9,9,9,9,9,0

100 REM SCREEN LOCATIONS FOR SITE SPECIFIC DATA (11 DATA ITEMS)

110 DATA 636,739,858,965,1354,1457,1539,1650,1744,1854,2154

120 REM SCREEN LOCATIONS FOR GEOMETRY DATA (27 DATA ITEMS)

130 DATA 648,927,932,937,942,947,952,957,962,967,972

160 DATA 1127,1132,1137,1142,1147,1152,1157,1162,1167,1172

180 DATA 1447,1549,1962,2048,2150,2260

200 REM FIRST SCREEN LOCATIONS FOR POLE MATERIALS DATA

210 DATA 902,904,911,920,929,938,947,956,965

220 REM SECOND SCREEN LOCATIONS FOR POLE MATERIALS DATA

230 DATA 902,904,911,920,929,938,947,956,965

240 REM FIRST SCREEN LOCATIONS FOR NETTING MATERIALS DATA

250 DATA 902,904,911,920,929,938,947,956,965

260 REM SECOND SCREEN LOCATIONS FOR NETTING MATERIALS DATA

270 DATA 902,904,911,920,929,938,947,956,965

280 REM FIRST SCREEN LOCATIONS FOR CABLING MATERIALS DATA

290 DATA 902,904,911,920,929,938,947,956,965

300 REM SECOND SCREEN LOCATIONS FOR CABLING MATERIALS DATA

310 DATA 902,904,911,920,929,938,947,956,965

320 REM FIRST SCREEN LOCATIONS FOR ANCHORS MATERIALS DATA

330 DATA 902,904,911,920,929,938,947,956,965

340 REM SECOND SCREEN LOCATIONS FOR ANCHORS MATERIALS DATA

350 DATA 902,904,911,920,929,938,947,956,965

360 REM FIELD LENGTHS FOR SITE SPECIFIC DATA (11 DATA ITEMS)

370 DATA 10,10,10,10,10,10,10,10,10,10,25

380 REM FIELD LENGTHS FOR GEOMETRY DATA (56 DATA ITEMS)

390 DATA 10,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,10,10,10,2,10,10

410 REM FIELD LENGTHS FOR SUPPORT MEMBERS DATA (FIRST SCREEN)

420 DATA 1,6,8,8,8,8,8,8,15

430 REM FIELD LENGTHS FOR POLE MATERIALS DATA (SECOND SCREEN)

440 DATA 1,6,8,8,8,8,8,8,15

450 REM FIELD LENGTHS FOR NETTING DATA (FIRST SCREEN)

460 DATA 1,6,8,8,8,8,8,8,15

470 REM FIELD LENGTHS FOR NETTING DATA (SECOND SCREEN)

480 DATA 1,6,8,8,8,8,8,8,15

490 REM FIELD LENGTHS FOR TENSION MEMBER DATA (FIRST SCREEN)

500 DATA 1,6,8,8,8,8,8,8,15

510 REM FIELD LENGTHS FOR TENSION MEMBER DATA (SECOND SCREEN)

520 DATA 1,6,8,8,8,8,8,8,15

530 REM FIELD LENGTHS FOR ANCHORS DATA (FIRST SCREEN)

540 DATA 1,6,8,8,8,8,8,8,15

550 REM FIELD LENGTHS FOR ANCHORS DATA (SECOND SCREEN)

Chapter 2 Data Addressing 39

560 DATA 1,6,8,8,8,8,8,8,15

570 REM

580 FOR 1=1 TO 31:READ NAD(I):NEXT I

59q' NS="" :FnR I-i "'ý 31:A"=A$+MKS$ (!Ar (I,) :'.XT I

600 LSET DA$=A$:PUT #3,1:CLOSE #3

610 NR=0:FOR I-1 TO 31:IF NAD(I)0O THEN 640

620 FOR J-1 TO NAD(I):NR=NR+1

630 READ A:LSET DL$=MKS$(A):PtJT *1,NR:NEXT J

640 NEXT I:CLOSE #1

650 NR-0:FOR I-1 TO 31:IF NAD(I)0O THEN 680

660 FOR J-1 TO NAD(I):NR=NR+l

670 READ A:LSET DF$-MKS$(A):PUT #2,NR:NEXT J

680 NEXT I:CLOSE #2:CLS

690 END

40 Chapter 2 Data Addressing

3 Utility Routines

The current version of the Camouflage Design Program uses 14 utility
routines during the various program functions. The first 12 utility
routines are stored in a single program module and are linked to each ex-
ecutable module involved with the program input, edit, and output func-
tions. The two remaining routines are stand-alone executable routines
which are used to create data files that the program execution requires.
Each of these utility routines will be described and the source codes
provided in this chapter. The utility routine names are as follows:
(1) SCRNDUMP, (2) DISPLAY, (3) GETLOC, (4) GETFLD,
(5) DSKWRT, (6) DSKRD, (7) CURSOR, (8) GENINP, (9) SCAN,
(10) LOOKPRIC, (11) BLANK, (12) OUTDIR, (13) VALID, and
(14) DEVICE.

SCRNDUMP Routine. The SCRNDUMP routine displays the
specified interval of values from the VAR$() array to the screen. This
routine is CALLed immediately after the screen is displayed, and fills the
screen with the data items that are stored in the VAR$0 array. Arguments
to the routine are IST, the first value of the VAR$() array to be displayed,
and IEND, the last value of the VAR$0 array to be displayed. The in-
dividual data items are located on the screen from the corresponding
values in the LPTS0 array. The screen ROW number is determined from
the first two characters of the LPTS0 value (INT(LPTS(IZ)/100)), and the
screen COLumn number is determined from the last two characters of the
LPTS() value (INT(LPTS(IZ)-ROW*100)). The source codes for the
routine are provided below:

60 SUB SCRNDUMP(IST,IEND)

70 FOR I-IST TO IEND:NSP-FLD(I)-LEN(VAR$(I)):IF NSP<=0 THEN 90

80 FOR IZ=1 TO NSP:VAR$(I)=VAR$(1)+" ":NEXT IZ

90 ROW-INT(LPTS(I)/100):COL=INT(LPTS(I)-ROW*100)

100 LOCATE ROW,COL:PRINT VAR$(I):NEXT I

110 END SUB

DISPLAY Routine. The DISPLAY routine is used to "highlight" a
specified data field on the screen. This routine is used during the input or
edit program functions to identify incorrect input when possible. The only
argument to the routine is the number of the data item to be highlighted, IJ.

Chapter 3 Utility Routines 41

The screen location, ROW and COL, are determined from the correspond-
ing value in the LPTSO array, and the specified data field is highlighted
by using the COLOR function. The incorrect value of the data item is dis-
playeu on the screen after the field is highlighted so that the user may
identify the source of the problem. The source codes of the routine are
provided below:

120 SUB DISPLAY(IJ)

130 ROW-INT(LPTS(IJ)/100) :COL-INT(LPTS(IJ)-ROW*100)

140 B$-"":FOR J=1 TO FLD(IJ):B$-B$+" ":NEXT J:COLOR 31,0

150 LOCATE ROW,COL:PRINT B$:LOCATE ROW,COL:PRINT VAR$(IJ)

170 LOCATE ROW,COL:PRINT VAR$(IJ)

180 END SUB

GETLOC Routine. The GETLOC routine is used to extract the begin-
ning screen field locations for the individual data items for a specified
input screen. This routine is used immediately before an input screen is
displayed. The arguments to the routine are the screen number, IP, and a
single precision array, DUM0. The beginning screen field locations are
stored in the random access data file DATA.LOC in sequential four-byte
records. The DATA.LOC file must have been OPENed as device number
2 before the GETLOC routine is CALLed. The first record to be read
(NST+1) is first determined by summing the number of data items
(NADO) associated with the input screens preceding input screen number
IP. The number of records to be read is defined by NAD(IP). Each record
is read, the beginning screen field location is extracted from the DL$
string with the CVS function, and the value is stored in the DUMO array.
The source codes for the routine are provided below:

190 SUB GETLOC(IP,DUM(1))

200 NST-0:IF IP-1 THEN 220

210 FOR I-1 TO IP-1:NST-NST+NAD(I):NEXT I

220 IEN-NST+NAD(IP):NO=0:FOR I=NST+1 TO IEN:NO=NO+1

230 GET #2,I:DUM(NO)=CVS(DL$) :NEXT I

240 END SUB

GETFLD Routine. The GETFLD routine is used to extract the field
lengths for the individual data items for a specified input screen. This
routine is used immediately before an input screen is displayed or when
screen data are extracted from the project data file. The arguments to the
routine are the screen number, IP, and a single precision array, DUMO.
The field lengths are stored in the random access data file DATA.FLD in
sequential four-byte records. The DATA.FLD file must have been
OPENed as device number 3 before the GETFLD routine is CALLed. The
first record to be read (NST+1) is first determined by summing the num-
ber of data items (NADO) associated with the input screens preceding
input screen number IP. The number of records to be read is defined by
NAD(IP). Each record is read, the field length is extracted from the DF$
string with the CVS function, and the value is stored in the DUM(array.
The source codes for the routine are provided below:

42 Chapter 3 Utility Routines

250 SUB GETFLD(IP,DUM(1))

260 NST-0:IF IP-1 THEN 280

270 FOR I-1 TO IP-1:NST-NST+NAD(I):NEXT I

280 IEN-NST+NAD(IP):NO-0:FOR I=NbT+l TO IEN:NO-NO+1

290 GET #3,I:DUM(NO)=CVS(DF$):NEXT I

300 END SUB

DSKWRT Routine. The DSKWRT routine is used to write the data
stored in the VAR$0 array to the project data file. This routine is used at
the conclusion of each input screen during an input/edit program function.
The only argument to the routine is the first 128-byte record number
which is to be written. The project data file must be OPEN and desig-
nated as device number 1. In addition, the number of data items to be
written (NLOC) and the field lengths of the data items (FLDO) must be
defined. The number of data items that will be written is stored in the
first four bytes of the first record to be written, and the number of bytes
written (LGR) is set to four. Each data item is processed sequentially as
follows:

(a) Check the length of the input data item (LEN(VAR$(I))); if the
length is less than the defined field length, the VAR$0 value is
filled with blanks to the prescribed field length,

(b) Check the length (LGR) of the current string (RA$) to be
written to ensure that a sufficient number of bytes exist to add
the current data item,

(c) If sufficient space exists, add the current data item to the string
and increase the string length by the field length of the data
item, or

(d) If sufficient space does not exist, the current string is blank
filled to 128 bytes and written to the project data file; the
record count (FREC) is incremented by one; the current (I) data
item is loaded into the first FLD(I) bytes of the record string
and the string length set to FLD(I).

(e) When all of the data items have been processed, check the
length of the current string (RA$); if the length of the string is
zero, all the records have been written; if the length of the
string is greater than zero, the string is blank filled to 128 bytes
and written to the project data file.

The source codes for the routine are provided below:

310 SUB DSKWRT(FREC)

320 RA$-MKS$ (NLOC) :LGR-4

330 FOR -1- TO NLOC:NA=FLD(I)-LEN(VAR$(I)):IF NA<-0 THEN 350

340 FOR J-1 TO NA:VAR$(I)-VAR$(I)+" ":NEXT J

350 IF LGR+FLD(I)>128 THEN 370

Chapter 3 Utility Routines 43

360 LGR=LGR+FLD(I):RA$=RA$+MID$(VAR$(I),lFLD(I)):GOTO 410

370 LAD=128-LEN(RA$):IF LAD=0 THEN 390

380 FOR J=1 TO LAD:RA$=RA$+" ":NEXT J

390 LSET AA$-RA$:PUT #1,FREC:FREC=FREC+1

400 RA$=MID$(VAR$(I),l,FLD(I)):LGR=FLD(I)"

410 NEXT I:IF LGR=0 THEN 430

420 LAD=128-LGR:FOR I=1 TO LAD:RA$=RA$+" ":NEXT I

425 LSET AA$=RA$:PUT #1,FREC

430 END SUB

DSKRD Routine. The DSKRD routine is used to retrieve the data
stored in the project data file. This routine is used to retrieve the project
data for a particular input screen. This data retrieval is accomplished
during an edit program function to allow the data to be displayed before
the edit process is begun or during an execution program function to
define certain parameters for the design routines. The arguments to the
routine are the first 128-byte records (FREC), the number of data items to
be read (LOCN), the array of the field lengths of the data items (DUMO),
and the array of the values of the data items (DUM$0). The project data
file must be OPEN and designated as device number 1. In addition, the
first record to be read (FREC) and the field lengths of the data items
(DUMO) must be defined. The first record is read and loaded into a string
RA$. The number of data items to be read, LOCN, is extracted from the
first four bytes of that string using the CVS function. The number of
bytes extracted from the string, LGR, is set to four. For each data it, -n, a
check is first made to ensure that sufficient space is left on the current
string for the data item (I). If a sufficient number of bytes remain
(LGR+DUM(i)<=128), the current data item is extracted from the input
string RA$ from byte LGR+ 1 for DUM(I) bytes and loaded into the string
array, DUM$(I). The number of bytes extracted (LGR) is incremented by
DUM(I), and processing for the next data item is begun. If sufficient
space does not exist in the current record for the data item
(LGR+DUM(I)> 128), the current number, FREC, is incremented by one,
and the next record is read from the project data file and loaded into the
string RA$. The number of types extracted, LGR, is set to zero. The data
item is then extracted from the first DUM(I) bytes of the string RA$, LGR
incremented by DUM(I), and processing for the next data item begun.
The source codes for the routine are provided below:

440 SUB DSKRD (FREC,LOCN,DUM(1),DUM$(1))

450 LGR-4:GET #I,FREC:RA$=AA$:LOCN=CVS(MID$(RA$,1,4))

460 FOR I-1 TO LOCN:IF LGR+DUM(I)>128 THEN 480

470 DUM$(I)=MID$(RA$,LGR+1,DUM(I)):LGR=LGR+DUM(I):GOTO 490

480 FREC-FREC+1:GET #1,FREC:RA$=AA$:LGR=O:GOTO 470

490 NEXT I

500 END SUB

CURSOR Routine. The CURSOR routine is called by the GENINP
routine to check each character of input provided by the user. These two
routines are CALLed during the edit/input program functions for each

44 Chapter 3 Utility Routines

input screen. The arguments to the CURSOR routine are the one-character
input (B$), the data field number of the current cursor location (ILOC),
aaid the data field number that the cursor is to be moved to (NXLOC).
Eight possible cursor movement functions are defined in the INKO array.
Each of these cursor movements is an extended two-character code repre-
senting a single keystroke. The first character is a NULL character which
indicates an extended code character, and the second character is the ac-
tual keystroke character. The ASC function is used to extract the numeric
equivalent of this second extended code character. The eight keystrokes
that are accepted by the CURSOR routine and the ASCII extended code
decimal equivalent of each are provided in Table 1.

Table 1
Extended Code Decimal Equivalents for Acceptable CURSOR
Movements
Movement Keyboard ASCII Decimal NXLOC Value

Number Description Equivalent Returned

1 HOME 71 1

2 UP ARROW 72 ILOC-1

3 PAGE UP 73 1

4 LEFT ARROW 75 ILOC-1

5 RIGHT ARROW 77 ILOC+1

6 END 79 NLOC

7 DOWN ARROW 80 ILOC+1

8 PAGE DOWN 81 NLOC

Each user-specified keystroke (B$) is passed to the CURSOR routine
to determine if the cursor should be moved to a different data field loca-
tion. The ASC function is used to extract the ASCII decimal equivalent
(NINK) of the second character (MID$(B$,2,1)) of B$. If one of the eight
acceptable cursor movements as provided in Table I has been provided,
the desired data field for cursor movement is loaded to NXLOC and
returned to the GENINP routine. If an acceptable cursor movement is not
identified, NXLOC is set to the current cursor location ILOC and returned
to the GENINP routine.

510 SUB CURSOR(B$,ILOCNXLOC)
520 DIM INK(8)

530 INK(1)'71:INK(2)=72: INK(3)=73: INK(4)=75

535 INK(5)-77: INK(6) -79: INK(7) 80

540 INK(8)-81:NINK-ASC(MID$(B$,2,1))

550 FOR I-1 TO 8:IF NINK=INK(I) THEN 570

Chapter 3 Utility Routines 45

560 NEXT I:NXLOC=ILOC:GOTO 730:REM NO FIND - IGNORE AND RETURN

570 ON I GOTO 580,590,580,640,660,680,690,680

580 NXLOC=1:GOTO 730:REM END SUB

590 IF ILOC=1 THEN NXLOC=1:GOTO 730

600 NXLOC-ILOC

610 NXLOC-NXLOC-1:IF NXLOC-1 THEN GOTO 730

620 IF INT(LPTS(ILOC)/100)-INT(LPTS(NXLOC)/100) THEN 610

630 GOTO 730

640 IF ILOC-1 THEN NXLOC-1:GOTO 730

650 NXLOC=ILOC-1:GOTO 730

660 IF ILOC=NLOC THEN NXLOC=NLOC:GOTO 730

670 NXLOC-ILOC+1:GOTO 730

680 NXLOC-NLOC:GOTO 730

690 IF ILOC-NLOC THEN NXLOC-NLOC:GOTO 730

700 NXLOC=ILOC

710 NXLOC-NXLOC+1:IF NXLOC=NLOC THEN GOTO 730

720 IF INT(LPTS(ILOC)/100)-INT(LPTS(NXLOC)/100) THEN 710

730 END SUB

GENINP Routine. The GENINP routine is the general input routine
for the input/edit program functions. The routine is used to record each
keystroke of input; check the input for extended code keystrokes and
move the cursor to the designated data field, if appropriate; check the
input for an <ESC> keystroke to terminate the input and move to the next
screen; check the input for a <Fl> keystroke to terminate the input and
move to the previous screen; and load the input into the correct locations
of the VAR$O array. The arguments to the routine are the first subscript
of the VAR$0 array to accept input (IST), the last subscript of the VAR$()
array to accept input (IEND), and the ASCII decimal equivalent of the last
keystroke made (LAST). Normal termination of.the routine is indicated
by the <ESC> key (LAST=27), and an abnormal termination of the
routine is indicated by the <Fl> key (LAST=59). Any other keystroke
will be either accepted as input or ignored.

Each of the data fields from IST to IEND will be processed until either
an <ESC> or <Fl> keystroke is made. The variable ILOC is the current
data field being processed. The variables ROW and COL contain the
screen location for the beginning of the current data field. The string
DFV$ contains the previously defined value of the current data item.
Each keystroke is stored in the one-character string B$. The string A$ is
used to concatenate the individual keystrokes for the data field. The vari-
able COLC is the current column location of the cursor within the data
field.

When a keystroke is provided, checks are made for an ASCII 27
(<ESC> key) or for an ASCII 8 (<BACKSPACE>). If <ESC> is detected,
the routine is terminated and control returned to the CALLing routine. If
<BACKSPACE> is detected, the length of the current input string (A$)
and current cursor location (COLC) are checked to ensure that the cursor
is not moved beyond the current data field limits. If the length of A$ is

46 Chapter 3 Utility Routines

greater than zero, the right-most character is deleted ai-d the column loca-
tion COLC is decreased by one. The last keystroke LAST is set to 8.

If neither an <ESC> or <BACKSPACE> was detected, the next check
is for an extended code (Table 1) keystroke. If the length of B$ is 2, an
extended code keystroke has been made. If the extended code keystroke
is ASCII 59 (<Fl>), input is terminated and control is returned to the
CALLing routine. If the extended code keystroke is less than ASCII 71 or
greater than ASCII 81, an unacceptable extended code keystroke has been
made, and the input is ignored. If an acceptable extended code keystroke
is detected, the CURSOR routine is called to determine the location of the
next data field, the current contents of the string A$ are stored in the
ILOC position of the VAR$O array, and the cursor is moved to the next
data field.

If an extended code keystroke was not detected, a check is made for an
ASCII 13 (<ENTER>) keystroke. If an <ENTER> is detected, the current
contents of the A$ string are stored in VAR$(ILOC), and the cursor is
moved to the next (ILOC+1) data field. If an <ENTER> is not detected,
normal data input is assumed. The keystroke B$ is added to the string A$,
the cursor column location (COLC) is incremented by one, and the last
keystroke (LAST) is set to the ASCII value of the B$ keystroke. This
input process continues until an <ESC> or <Fl> keystroke is made. The
source codes for the routine are provided below:

740 SUB GENINP(IST,IEND,LAST)

750 ILOC=IST:LAST=27

760 ROW-INT(LPTS(ILOC)/100) :COL=INT(LPTS(ILOC)-ROW*100)

765 DFV$-VAR4 (ILOC)

770 LOCATE ROW,COL:COLOR 0,7

775 C$="":FOR 1=1 TO FLD(ILOC):C$=C$+" ":NEXT I

780 PRINT C$:LOCATE ROW,COL:PRINT VAR$(ILOC) :AS="":COLC-COL

790 LOCATE ROW,COLC,1:B$-INKEY$:IF LEN(B$)=0 THEN 790

800 IF ASC(B$)-27 THEN 1040:REM ESCAPE

810 IF ASC(B$)<>8 THEN 860:REM DESTRUCT BACKSPACE

820 IF LEN(A$)=0 THEN 790

830 AS-LEFTS(AS,LEN(A$)-I) :LOCATE ROW,COL:PRINT C$

835 LOCATE ROW,COL:PRINT A$

840 IF COLC>COL THEN COLC=COLC-1

850 LAST=8:GOTO 790

860 IF LEN(B$)<>2 THEN 960:REM EXTENDED CODE KEYS HAVE LEN=2

870 IF ASC(MID$(B$,2,1))-59 THEN LAST=59:GOTO 1040

880 IF ASC(MID$(B$,2,1))<71 OR ASC(MID$(B$,2,1))>81 THEN 790

890 CALL CURSOR(B$,ILOC,NXLOC)

900 IF NXLOC=ILOC THEN 790

910 IF LEN(A$)<>0 THEN 940

920 LOCATE ROW,COL:COLOR 15,1:PRINT C$

930 LOCATE ROW,COL:PRINT DFV$:ILOC=NXLOC:GOTO 760

940 VAR$(ILOC)=AS:LOCATE ROW,COL

945 COLOR 15,1:PRINT C$:LOCATE ROW,COL

Chapter 3 Utility Routines 47

950 PRINT A$:1LOC=NXLOC:GOTO 760

960 IF ASC(B$)<>13 THEN 1010:REM CARRIAGE RETURN (ENTER KEY)

970 IF LEN(A$)=0 THEN A$=DFV$

980 VAR$(ILOC)=A$:LOCATE ROW,COL:COLOR 15,1:PRINT C$

990 LOCATE ROW,COL:PRINT AS:IF ILOC=IEND THEN 790

1000 ILOC=ILOC÷1:GOTO 760

1010 IF LEN(AS)=>FLD(ILOC) THEN 1030

1020 A$-A$+B$:LOCATE ROW,COL:PRINT C$

1025 LOCATE ROW,COL:PRINT A$:COLC=COLC+1

1030 LAST=ASC(B$) :GOTO 790

1040 IF LEN(A$)<>0 THEN 1070

1050 LOCATE PCW,COL:COLOR 15,1:PRINT C$

1060 LOCATE ROWCOL:PRINT DFV$:GOTO 1090

1070 VAR$(ILOC)=AS:LOCATE ROW,COL:COLOR 15,1:PRINT C$

1080 LOCATE ROW,COL:PRINT A$

1090 FOR I=IST TO IEND:NA=FLD(I)-LEN(VAR$(I)):IF NA<=0 THEN 1110

1100 FOR J-1 TO NA:VAR$(I)=VAR$(I)+" ":NEXT J

1110 NEXT I

1120 LOCATE ROW,COL,0:END SUB

SCAN Routine. The SCAN routine will extract the individual numeric
and alpha-numeric data items from an input string (Epps and Corey 1990).
This routine is CALLed during any of the program functions when nu-
meric data must be extracted from the string arrays VAR$O or DUM$().
The arguments of the SCAN routine are an input string (AS), a single pre-
cision array (VO) for the returned numeric data, the number of numeric
data items returned (NN), a string array (B$()) for the returned alpha-
numeric data, and the number of alpha-numeric data items returned (NW).

The B$() and V() arrays and the NW and NN counters are initialized.
Each character of the A$ string is examined for either a number (0-9), a
plus (+), a minus (-), a decimal point (.) or a blank. The string variable
VZ$ is used to store the contents of the number or word being processed.
The first character of VZ$ is used to determine whether a number or word
is being processed: if that first character is either a zero (0), a plus (+)
sign, a minus (-) sign, a decimal point (.) or a numeric (0-9), a number is
assumed and the variable NZ is set to zero. For any other characters, a
word is assumed and NZ is set to two. A blank character signifies the end
of the current number or word: the respective counter (NW or NN) is in-
cremented by one, the contents of VZ$ are stored in the respective array
(B$() or VO), and the input string VZ$ is blanked. This process continues
until the end of the input string A$ is reached. The source codes for the
routine are provided below:

1130 SUB SCAN(AS,V(1),NN, B$(1),NW)

1140 FOR IZ-1 TO 20:B$(IZ)="*":V(IZ)=O:NEXT IZ:VZ$="":A$=A$+"

1150 NW-0:NN-0:NZ=0

1160 FOR IZ-1 TO LEN(A$)

1170 IZ$=MID$(AS,IZ,2) :LZ$-LEFT$(IZ$,1) :RZ$-RIGHT$(IZ$,i)

1180 IF NZ-2 THEN 1270

48 Chapter 3 Utility Routines

1190 IF NZ=1 THEN 1310

1200 IF LZ$=" " THEN 1340

1210 IF LZ$-"0" THEN 1260

1220 IF LZ$="+" THEN 1260

1230 IF LZ$="-" THEN 1260

1240 IF LZ$="." THEN 1260

1250 IF LZ$<"1" OR LZ$>"9" GOTO 1290

1260 NZ=2

1270 VZ$=VZ$+LZ$:IF RZ$<>" " THEN 1340

1280 NN-NN+1:V(NN)=VAL(VZ$) :VZ$="":NZ=0:GOTO 1340

1290 IF NZ<>0 THEN 1310

1300 B$(NW+1)=LZ$:NZ=1:GOTO 1320

1310 B$(NW+1)-B$(NW+1)+LZ$

1320 IF RZ$<>" " THEN 1340

1330 NW=NW+1:NZ=0

1340 NEXT IZ

1350 END SUB

LOOKPRIC Routine. The LOOKPRIC routine is used to search the
pricing data file for the six-character identifier of a specified material
item and return the desired pricing information for that material item. The
routine is used in the edit/input program functions to search the pricing
data file for material items for the support members, tension members, net-
ting, and anchors. The arguments to the routine are the six-character
material identifier (ITM$) and a string containing the material charac-
teristics (PRST$) of the specified material item. The pricing data file
must be OPEN as device number 5 before the LOOKPRIC routine can be
called. In addition, the string array PRD$() must have been defined in the
FIELD statement accompanying the OPEN statement. For a detailed dis-
cussion of the pricing data file organization, refer to Chapter 4 of this
document.

The six-character material identifier (ITM$) consists of the five-character
name of the material item and a one-character use code of the material
item. The use code is used to categorize the individual material items as
to support members (P), tension members (C), netting (N), anchors (A), or
others. A complete list of the use codes currently defined is provided in
Chapter 4. The sixth character of ITM$ is extracted as the use code US$,
and the ASCII representation of US$ is stored in NOASC. The BEGADO
array in the unlabeled COMMON block contains the beginning subscript
in the MARKO array of five-character material names for each use code.
The variable NOASC is the subscript in the BEGADO array for the use
code specified. All material items with a blank code are listed first, fol-
lowed by use codes 0-9 and use codes A-Z, providing a total of 37 use
codes.

If no material items currently exist for the specified use code
(BEGAD(NOASC)=0), execution of the routine is terminated, and a blank
material string (PRST$) is returned to the CALLing routine. If material
iterns exist for the specified use code, the MARKO array is searched over

Chapter 3 Utility Routines 49

the subscript limits for the specified use code for the first five characters
of ITM$. If the material name is found, the record number for the
material item is determined, and the material data are extracted from the
pricing data file and loaded into the string PRST$. If the material name is
not found, a blank PRST$ string is returned. The source codes for the
routine are provided below:

1840 SUB LOOKPRIC(ITM$,PRST$)

1850 REM

2100 PRST$="

2110 NOASC = 0 ' 04/28/88

2120 NLEN = LEN(ITM$)

2130 IF NLEN >= 6 THEN ' MODIFIED BY

C.H. LIN

2140 US$=MID$(ITM$,6,1): NOASC=ASC(US$) ' TO SKIP A

NULL STRING

2150 END IF

2160 IF NOASC=32 THEN NOASC=1

2170 IF NOASC>=48 AND NOASC<=57 THEN NOASC=NOASC-46

2180 IF NOASC>=65 AND NOASC<=90 THEN NOASC=NOASC-53

2190 IF NOASC<=0 OR NOASC>37 THEN 2320

2200 IF BEGAD(NOASC)=0 THEN 2320

2210 NS=BEGAD(NOASC):IF NOASC-37 THEN NE=NMARK:GOTO 2260

2220 KT-NOASC

2230 NE-BEGAD(KT+1):IF NE>0 THEN 2260

2240 KT=KT+1:IF KT=37 THEN NENMARK:GOTO 2260

2250 GOTO 2230

2260 FOR IZ-NS TO NE:IF MID$(ITM$,1,5)=MID$(MARK(IZ),1,5)

THEN 2280

2270 NEXT IZ:GOTO 2320

2280 NREC=IZ+79:GET #5,NREC

2290 REM

2300 PRST$-MID$(ITM$,1,6)+MID$(PRD$(2),1,4)

2310 REM

2320 END SUB

BLANK Routine. The BLANK routine is used to determine whether a
specified data item is empty (blank) or not. This routine is used in all of
the program functions. The arguments of the routine are the string value
of the data field to be examined (SPEC$) and a blank indicator (NBLK).
If the string is blank, NBLK is 0, and if the string is not blank, NBLK is
1. Each character of the SPEC$ string is examined for a blank (ASCII
32), and if a nonblank character is detected, NBLK is set to one and the
execution of the routine is terminated. The source codes for the routine
are shown below:

2330 SUB BLANK(SPEC$,NBLK)

2340 REM PROGRAM TO CHECK BLANK DATA RECORDS

2350 REM SPECS STRING DATA ITEM TO BE CHECKED FOR BLANKS

2360 REM NBLK 1 STRING DATA ITEM SPECS IS NOT BLANK

50 Chapter 3 Utility Routines

2370 NBLK=0:FOR JZ-1 TO LEN(SPEC$)

2380 IF ASC(MID$(SPEC$,JZ,1))<>32 THEN NBLK=1:GOTO 2400

2390 NEXT JZ

2400 END SUB

OUTDIR Routine. The OUTDIR routine is used to display a directory
of the project data file which currently resides on the floppy disk drive.
This routine is used at the beginning of an edit or execution program func-
tion when the program requires a project name and revision number be
input for an existing project. If the user is not sure of the project name
and/or the revision number, a response of DIR (or dir) will CALL the
OUTDIR routine and display all of the project names and revision num-
bers of the project data files found on the floppy disk (A drive). The only
argument of the routine is a string array (DUM$O), which contains the
revision numbers of the project data files found on the floppy disk drive.
The project names of the data files found on the floppy disk drive are
returned in the VAR$O array, which resides in the unlabeled COMMON
block. A total file directory of the floppy (A:) disk drive is output to a
scratch file named DIRECT. Each file name (A$) in this scratch file is
checked for a first character of P, the project data file name prefix charac-
ter. If the first character of the file name is a P, the project name is ex-
tracted from the next six characters, the revision number extracted from
the eighth character, and the data file extension is extracted from charac-
ters 10-12. If the data file extension is not .DAT, the file name is ignored
and the directory search continued. If the extension name is .DAT, the file
counter NODAT is incremented by one, the project name is stored in the
VAR$() array, and the revision number is stored in the DUM$() array.
When the file search is complete, the project names are sorted alphabeti-
cally, and the resulting list of project names and revision numbers are dis-
played on the screen. The source codes for this routine are provided
below:

2850 SUB OUTDIR(DUM$(1))

2860 SHELL "DIR A: > DIRECT"

2870 CLS:OPEN "DIRECT" FOR INPUT AS #1
2880 LOCATE 1,25:PRINT "U. S. ARMY CORPS OF ENGINEERS"

2890 LOCATE 2,23:PRINT "DIRECTORY OF CAMOUFLAGE PROJECTS"

2900 PRINT

2910 FOR IZ-1 TO 3:PRINT " PROJECT REVISION ";:NEXT IZ

2915 PRINT " "

2920 FOR IZ-1 TO 3:PRINT " NUMBER NUMBER .;:NEXT IZ

2925 PRINT "

2930 NODAT=0

2940 IF EOF(1) THEN CLOSE #1:GOTO 3070

2950 LINE INPUT #1, AS

2960 IF MID$(A$,1,1)<>"p" THEN 2940

2970 IF LEN(A$)<12 THEN 2940

2980 ESN$-MID$(A$,2,6) :RV$-MID$(A$,8,1) :EXT$=MID$(A$,10,3)

2990 IF EXT$<>"DAT" THEN 2940

3000 IF NODAT-0 THEN 3030

Chapter 3 Utility Routines 51

3010 FOR IZ=1 TO NODAT:IF ESN$=VAR$(IZ) AND RV$=DUM$(IZ) THEN 2940

3020 NEXT IZ

3030 NODAT=NODAT+1 :VAR$ (NODAT) =ESN$:DUM$ (NODAT) =RV$

3040 GOTO 2940

3050 REM

3060 REM BUBBLE SORT PROJECT NAMES AND REVISION NUMBERS

3070 FOR IZ=1 TO NODAT-1:LOWP=VAL(VAR$(IZ))

3075 LOWR-VAL(DUM$(IZ)) :ROW=IZ

3080 FOR JZ=IZ+1 TO NODAT:IF VAL(VAR$(JZ))>LOWP THEN 3120

3090 IF VAL(VAR$(JZ))<LOWP THEN 3110

3100 IF VAL(DUM$(JZ))>LOWR THEN 3120

3110 LOWP-VAL(VAR$(JZ)) :LOWR-VAL(DUM$(JZ)) :ROW=JZ

3120 NEXT JZ

3130 IF ROW=IZ THEN 3160

3140 PDUM$=VAR$(IZ) :RDUM$=DUM$(IZ)

3145 VAR$(IZ)=VAR$(ROW):DUM$(IZ)=DUM$(ROW)

3150 VAP (ROW) =PDUM$:DtIM$ (ROW)=RDUM$

3160 NEXT IZ

3170 FOR IZ=1 TO NODAT

3180 PRINT USING " \ \ ";VAR$(IZ),DUM$(IZ);

3190 IF IZ/3=INT(IZ/3) THEN PRINT

3200 NEXT IZ

3210 REM

3220 REM FINISHED - USER PROMPT TO CLEAR SCREEN

3230 LOCATE 24,2:PRINT "Press any key to continue ";

3240 A$=INKEY$:IF LEN(A$)=0 THEN 3240

3250 END SUB

VALID Program. The VALID program is a stand-alone executable
program which is used to create the program data file COMFIL. The con-
tents of the COMFIL data file are as follows:

(1) The maximum date for program validation; after this date has
occurred, the program will automatically terminate and KILL
the COMFIL data file, thereby preventing the program from
being executed until the COMFIL data file is recreated;

(2) A 25-character user name;

(3) A five-character program registration number (1-99999) which
will appear on each page of printed output;

(4) The default disk drive specification; the letter-designation for
the disk drive on which the project data will be maintained
during program execution and all program data files are
assumed to reside; and

(5) The five-character program version number which will appear
on each page of printed output.

52 Chapter 3 Utility Routines

The VALID program must be executed before the Camouflage Design
Program is executed. When the five inputs described above are provided
successfully, the COMFIL data file will be written on the hard disk, and
execution of the Camouflage Design Program can be initiated. Each of
the five data items is written as a 128-byte record in the random access
data file. No further executions of the VALID program are required un-
less any of the five data items are to be changed. Subsequent executions
of the program simply replace the contents of the COMFIL, and no back
copies of this data file are retained. The source codes for the program are
provided below:

10 REM ROUTINE TO CREATE VALID COMFIL DATA FILE VALID.BAS

20 REM

30 REM CONTENTS OF COMFIL

40 REM RANDOM ACCESS DATA FILE WITH FIELD LENGTH = 128 BYTES

50 REM RECORD 1 VALIDATION DATE - MONTH, DAY AND YEAR

60 REM RECORD 2 USER NAME (25 CHARS - MAY BE BLANK)

70 REM RECORD 3 PROGRAM REGISTRATION NUMBER (5 CHARS)

80 REM RECORD 4 SCRATCH DISK DRIVE SPECIFICATION (1 CHAR)

90 REM RECORD 5 PROGPJM VERSION NUMBER (5 CHARS)

100 REM

110 DIM LPTS(5),FLD(5),VAR$(5)

120 DIM DATS(10),JUL(12)

130 COMMON SHARED /VALID/NLOC,FLDo,LPTSo,AA$,VAR$()

140 DATA 936,1136,1336,1536,1736,10,25,5,1,5

150 DATA 0,31,59,90,120,151,181,212,243,273,304,334

160 FOR I=1 TO 10:READ DATS(I):NEXT I

170 FOR I-1 TO 12:READ JUL(I):NEXT I

180 FOR I=1 TO 5:LPTS(I)=DATS(I):FLD(I)=DATS(I+5):NEXT I

190 REM

200 FOR IZ=1 TO 5:VAR$(IZ)="":FOR JZ=1 TO FLD(IZ)

210 VAR$(IZ)-VAR$(IZ)+" ":NEXT JZ:NEXT IZ

220 OPEN "COMFIL" AS #1 LEN=128:FIELD #1, 128 AS BA$

230 GET #1,1:VERN=CVS(BA$):YR=INT(VERN/1000):IF VERN=0 THEN 360

240 YRS=STR$(YR)

250 IF ID$(YR$,1,1)-" " THEN YR$=RIGHT$(YR$,LEN(YR$)-I):GOTO 250

260 DAT-JERN-YR*1000:FOR IZ-1 TO 12:IF JUL(IZ)>=DAT THEN 280

270 NEXT IZ:IZ-13

280 MON-IZ-1:DAY-DAT-JUL(MON)

290 MON$-STR$(MON):IF MON<10 THEN MID$(MON$,1,1)="0":GOTO 310

300 IF MID$(MON$,1,1)-" " THEN

302 MON$-RIGHT$(MON$,LEN(MON$)-l)

304 GOTO 300

306 ENDIF

310 DAY$-STR$(DAY):IF DAY<10 THEN MID$(DAY$,1,1)="0":GOTO 330

320 IF MID$(DAY$,1,1)=" " THEN

322 DAY$-RIGHT$(DAY$,LEN(DAY$)-1)

324 GOTO 320

326 ENDIF

330 VAR$(1)=MON$+"/"+DAY$+"/"+YR$

Chapter 3 Utility Routines 53

340 GET #1,2:VAR$(2)-MID$(BA$,1,25):GET #1,3:VAR$(3)

=STR$(CVS(BA$))

350 GET #1,4:VAR$(4)=MID$(BA$,1,1):GET #1,5:VAR$(5)=MID$(BA$,l,5)

360 CLOSE #1

370 COLOR 15,1,1:CLS

380 PRINT:PRINT "U. S. Army Corps of Engineers"

390 PRINT 'Waterways Experiment Station"

400 PRINT "Vicksburg, MS 39180"

410 PRINT:PRINT "Camouflage Design Program Validation"

420 LOCATE 9,12:PRINT "PROGRAM RENEWAL DATE"

430 LOCATE 11,23:PRINT "USER NAME"

440 LOCATE 13,5:PRINT "PROGRAM REGISTRATION NUMBER"

450 LOCATE 15,14:PRINT "SCRATCH DISK DRIVE"

460 LOCATE 17,10:PRINT "PROGRAM VERSION NUMBER"

470 LOCATE 24,2:PRINT "Press <ESC> when input is

complete . . .";

480 IST-i:IEND-5:NLOC-IEND:CALL SCRNDUMP(IST, IEND)

490 CALL GENINP(ISTIEND,LAST)

500 REM

510 RPM "'HECK INPUT DATA FOR CORRECT FORMAT

520 DAT$-VAR$(1):NSL-0:FOR IZ-1 TO LEN(DAT$)

530 IF MID$(DAT$,IZ,1)="/" THEN NSL=NSL+1

540 NEXT IZ:IF NSL-2 THEN 630

550 REM

560 REM RENEWAL DATE HAS INCORRECT FORMAT

570 B$=" Renewal Date must have following format: MO/DA/YEAR

580 COLOR 31,1,1:LOCATE 24,2:PRINT B$;

590 A$-INKEY$:IF LEN(A$)-0 THEN 590

600 B$-"

610 COLOR 15,1,1:LOCATE 24,2:PRINT B$;:GOTO 470

620 REM

630 MON=VAL(MID$(DAT$,1,2)):IF MON<1 OR MON>12 THEN 570

640 DAY-VAL(MID$(DAT$,4,2)):IF DAY<1 OR DAY>31 THEN 570

650 YEAR=VAL(MID$(DAT$,7,4)):IF YEAR<1988 THEN 570

660 REM

670 REM GOOD DATE HAS BEEN PROVIDED

680 REM PROGRAM REG NUMBER MUST BE PROVIDED

690 DNUM=VAL(VAR$(3)):IF DNUM>=1 AND DNUM<=99999! THEN 730

700 B$-" License Number must be specified - Press any key

to continue"

710 GOTO 580

720 REM

730 IF LAST<>27 THEN 480

740 OPEN "COMFIL" AS #1 LEN=128:FIELD #1, 128 AS BA$

750 VERN-YEAR*1000+JUL(MON)+DAY

760 LSET BA$=MKS$(VERN):PUT #1,1

770 LSET BA$=MID$(VAR$(2),1,25):PUT #1,2

780 LSET BA$-MKS$(DNUM):PUT #1,3

790 LSET BA$=MID$(VAR$(4),1,1):PUT #1,4

800 LSET BA$-MID$(VAR$(5),1,5):PUT #1,5

54 Chapter 3 Utility Routines

810 CLOSE #1:CLS

820 END

DEVICE Program. The DEVICE program is a stand-alone executable
program that is used to create the DEVICES data file. The DEVICES data
file is a sequential file which contains two records (lines) when properly
loaded. The data from this file are used to define the type of display and
the type of printer being used by the Camouflage program. The contents
of the DEVICES data file are as follows:

(1) The keyword PRINT followed by the port number and model
number for the printer type specified and scaling factor that
will be used for the printer plots generated by the program; and

(2) The keyword SCREEN followed by the port number and model
number for the display type specified and the scaling factor that
will be used for the graphic displays produced by the program.

The DEVICE program must be executed before the Camouflage Design
Program is executed. When the required inputs are provided successfully,
the DEVICES data file will be written on the hard disk, and execution of
the Camouflage Design Program can be initiated. No further executions
of the DEVICE program are required unless the printer or the display on
the computer is changed. Subsequent executions of the program simply
replace the contents of the DEVICES, and no back copies of this data file
are retained. An example of the contents of the DEVICES data file and
the source codes for the DEVICE program are provided below:

PRINT 0 11 1.0000 12 17

SCREEN 91 91 1.0000 11

10 REM CAMOUFLAGE DESIGN DEVICES SPECIFICATION DEVICE.BAS

20 REM LATEST REVISION 01/29/91 JWE

30 DIM LPTS(135),FLD(135),VAR$(135),IREC(31),NAD(31),PRD$(18)

40 DIM BEGAD(37),MARK(2002) AS STRING * 5

50 COMMON SHARED NLOC,NADo,FLDo,LPTSoLRECo,NMARK,

BEGADo,DL$,DFS,AA$,VARS(),PRD$(),MARK() AS STRING*5

55 COLOR 15,1,1:CLS

60 ON ERROR GOTO 110D

70 DIM DLOC(3),DUMR$(18),V(20),B$(20)

80 DATA 536,538,576

90 NPRT=0:FOR IZ-1 TO 3:READ DLOC(IZ):NEXT IZ

100 NR-1:NRZ-17:NM-1:MD-0

110 REM

120 OPEN "DEVICES" FOR INPUT AS #1

130 IF EOF(1) THEN 180

140 LINE INPUT #1, AS:CALL SCAN(A$,Vo,NN,B$(),NW)

150 IF MIDS(B$(1),1,4)-"PRIN" THEN NR=V(4):NRZ=V(5)

160 IF MIDS(B$(1),l,4)-"SCRE" THEN NM-V(4)

170 GOTO 130

Chapter 3 Utility Routines 55

180 CLOSE #1

190 REM

200 REM MONITOR/DISPLAY SPECIFICATION

210 NLOC-12:LPTS(1)=DLOC(1):FLD(1)=l

220 FOR IZ=2 TO NLOC:LPTS(IZ)=LPTS(IZ-1)+100:FLD(IZ)=l:NEXT IZ

230 FOR IZ=1 TO NLOC:VAR$(IZ)="N":NEXT IZ:VAR$(1)="Y"

240 IF NM<>0 THEN VAR$(1)="N":VAR$(NM)="Y"

250 IST=1:IEND=NLOC:CALL MONITOR:CALL SCRNDUMP(IST,IEND)

260 LOCATE 24,2:PPINT "Press <ESC> whenf input is

complete . ";

270 CALL GENINP(IST,IEND,LAST)

280 REM

290 REM DATA CHECKING FOR CONSISTENCY

300 REM CHECK FOR ONLY ONE MONITOR SPECIFICATION

310 IYES=O:FOR IZ=1 TO NLOC

320 IF VAR$(IZ)="Y" OR VAR$(IZ)="y" THEN IYES=IYES+I:NM=IZ

330 NEXT IZ:IF IYES=1 THEN 400

340 B$(1)=" Only ONE MONITOR DEVICE must be specified -

Pres3 any key "

350 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 350

360 COLOR 31,1,1:LOCATE 24,2:PRINT B$(1);

370 A$=INKEY$:IF LEN(A$)=0 THEN 370

380 COLOR 15,1,1:GOTO 250

390 REM

400 IF LAST<>27 THEN 270

410 CALL DISPLAY(NM):COLOR 15,1,1

420 A$=INKEY$:IF LEN(A$)=0 THEN 420

430 REM

440 REM MONITOR DISPLAY DEVICE NUMBERS = PORT NUMBERS

450 MODM=0:SCFCT=1!:IF NM=2 THEN MODM=93

460 IF NM=3 OR NM=5 THEN MODM=99

470 IF NM=4 OR NM=8 THEN MODM=94

480 IF NM=6 THEN MODM=95

490 IF NM=7 THEN MODM=96

500 IF NM-9 THEN MODM=97

510 IF NM=10 THEN MODM=90

520 IF NM-i1 THEN MODM=91

530 IF NM=12 THEN MODM=92

540 REM

550 REM PRINTER/DISPLAY SPECIFICATIONS

560 NLOC-18:LPTS(1)=DLOC(1)

565 FOR IZ=2 TO 16:LPTS(IZ)=LPTS(IZ-1)+100:NEXT IZ

570 LPTS(17)-DLOC(3):LPTS(18)=LPTS(17)+100

580 FOR IZ1l TO NLOC:FLD(IZ)=1:NEXT IZ

590 FOR IZ=1 TO NLOC:VAR$(IZ)="N":NEXT IZ

600 VAR$(NR)-"Y":VAR$(NRZ)-"Y"

610 IF NPRT-0 THEN 660

620 REM

630 REM LOAD LAST DISPLAY SPECIFICATIONS

640 FOR IZ-1 TO NLOC:VAR$(IZ)-DUMR$(IZ):NEXT IZ

56 Chapter 3 Utility Routines

650 REM

660 IST=I:IEND=NLOC:CALL PRINTER:CALL SHEETS

665 CALL SCRNDUMP(IST, IEND)

670 LOCATE 24,2

680 PRINT "Press <ESC> to complete input or <Fl> for previous

screen ";

690 CALL GENINP(IST,IEND,LAST)

700 NPRT=1:FOR IZ=l TO NLOC:DUMR$(IZ)-VAR$(IZ):NEXT IZ

710 IF LAST=59 THEN 210

720 REM

730 REM DATA CHECKING FOR CONSISTENCY

740 REM CHECK FOR ONLY O"E PRINTER SPECIFICATION

750 IYES=O:FOR IZ=l TO 16

760 IF VAR$(IZ)="Y" OR VAR$(IZ)='y" THEN IYES=IYES+1:NR=IZ

770 NEXT IZ:IF IYES=1 THEN 850

780 B$(1)=' Only ONE PRINTER DEVICE must be specified -

Press any key "

790 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 790

800 COLOR 31,1,1:LOCATE 24,2:PRINT B$(1);

810 A$-INKEY$:IF LEN(A$)=0 THEN 810

820 COLOR 15,1,1:GOTO 660

830 REM

840 REM CHECK FOR ONLY ONE PRINTER PAGE SIZE SPECIFICATION

850 IYES-0:FOR IZ-17 TO 18

860 IF VAR$(IZ)="Y" OR VAR$(IZ)="y" THEN IYES=IYES+1:NRZ=IZ

870 NEXT IZ:IF IYES-1 THEN 910

880 B$(1)-" Only ONE Printer PAGE SIZE must be specified

- Press any key

890 GOTO 790

900 REM

910 IF LAST<>27 THEN 560

920 CALL DISPLAY(NR) :CALL DISPLAY(NRZ) :COLOR 15,1,1

930 A$=INKEY$:IF LEN(A$)=0 THEN 930

940 REM

950 REM PRINTER DEVICE NUMBERS - ALL PORT NUMBERS = 0

960 MODR=1:IF NR=3 OR NR=4 THEN MODR=5

970 IF NR=7 OR NR=12 THEN MODR=11

980 IF NR=5 OR NR=6 THEN MODR=15

990 IF NR=8 THEN MODR=41

1000 IF NR=16 THEN MODR=60

1010 IF NR-13 THEN MODR=70

1020 IF NR=14 THEN MODR=72

1030 IF NR=15 THEN MODR=75

1040 REM

1050 REM CALCULATE PAGE SIZE FACTOR FROM SPECIFIED PAPER SIZE

1060 PRFCT=1!:IF NRZ=18 THEN PRFCT=14!/11!

1070 REM

1090 REM WRITE IPORT IDEV FACT TO FILE 'DEVICES' ON

HARD DISK

1100 CLS:OPEN "DEVICES" FOR OUTPUT AS #1:PRPRT=0

Chapter 3 Utility Routines 57

1110 A$-"PRINT #### ## ##.#### ### ###"

1115 PRINT #1, USING A$;PRPRT,MODR,PRFCT,NR,NRZ

1120 PRINT #1, USING "SCREEN ### ## ##.#### ###";

MODM, MODM, SCFCT,NM

1130 CLOSE:GOTO 1260

1140 REM

1150 REM ERROR CHECKING

1160 IF ERR<>53 THEN 1210

1170 OPEN "DEVICES" FOR OUTPUT AS #1:PRINT #1, " ":CLOSE #i

1180 RESUME 210

1190 REM

1200 REM GENERAL ERROR - ABORT PROGRAM

1210 B$(1)=" Error Number #### - at Line Number ##### - Press

any key"

1220 IF LEN(B$(1))<78 THEN B$(1)-B$(1)+" ":GOTO 1220

1230 COLOR 31,1,1:LOCATE 24,2:PRINT USING B$(1);ERR,ERL;

1240 A$-INKEY$:IF LEN(A$)-0 THEN 1240

1250 COLOR 15,1,1:CLS

1260 END

1270 REM

1280 REM PRINTER/DISPLAY DEVICES SPECIFICATION SCREEN

1290 SUB PRINTER

1300 CLS

1310 LOCATE 1,25:PRINT 'U. S. ARMY CORPS OF ENGINEERS"

1320 LOCATE 2,23:PRINT "CAMOUFLAGE DESIGN OUTPUT DEVICES"

1330 LOCATE 4,3:PRINT "PRINTING DEVICE (YIN)"

1340 LOCATE 5,5:PRINT "NO PRINTER"

1350 LOCATE 6,5:PRINT "EPSON (MX,RX-R0)"

1360 LOCATE 7,5:PRINT "EPSON (FX,JX-80)"

1370 LOCATE 8,5:PRINT "EPSON (FX-85)"

1380 LOCATE 9,5:PRINT "EPSON (FX-185,286)"

1390 LOCATE 10,5:PRINT "EPSON (FX-100)"

1400 LOCATE 11,5:PRINT "EPSON (MX,RX-100)"

1410 LOCATE 12,5:PRINT "EPSON (LQ-1500)"

1420 LOCATE 13,5:PRINT "IBM (PRPRNTR/GRPHCS)"

1430 LOCATE 14,5:PRINT "CENTRONICS"

1440 LOCATE 15,5:PRINT "OKIDATA (92,182,192)"

1450 LOCATE 16,5:PRINT "OKIDATA (93,193)"

1460 LOCATE 17,5:PRINT "HP THINKJET"

1470 LOCATE 18,5:PRINT "HP QUIETJET"

1480 LOCATE 19,5:PRINT "HP QUIETJET PLUS"

1490 LOCATE 20,5:PRINT "HP LASERJET"

1500 END SUB

1510 SUB MONITOR

1520 CLS

1530 LOCATE 1,25:PRINT "U. S. ARMY CORPS OF ENGINEERS"

1540 LOCATE 2,23:PRINT "CAMOUFLAGE DESIGN OUTPUT DEVICES"

1550 LOCATE 4,3:PRINT "DISPLAY ADAPTER (Y/N)"

1560 LOCATE 5, 5:PRINT "TEXT 2'FIT •"Y"

1570 LOCATE 6,5:PRINT "HERCULES MONO (720 BY 348)"

58 Chapter 3 Utility Routines

1580 LOCATE 7,5:PRINT "CGA (2 COLOR 640 BY 200)"

1590 LOCATE 8,5:PRINT "EGA (16 COLOR 320 BY 200)"

1600 LOCATE 9,5:PRINT "EGA (2 COLOR 640 BY 200)"

1610 LOCATE 10,5:PRINT "EGA (16 COLOR 640 BY 200)"

1620 LOCATE 11,5:PRINT "EGA (MONOCHRM 640 BY 350)"

1630 LOCATE 12,5:PRINT "EGA (16 COLOR 320 BY 200)"

1640 LOCATE 13,5:PRINT "EGA (16 COLOR 640 BY 350)"

1650 LOCATE 14,5:PRINT "VGA (2 COLOR 640 BY 480)"

1660 LOCATE 15,5:PRINT "VGA (16 COLOR 640 BY 480)"

1670 LOCATE 16,5:PRINT "VGA (256 COLOR 320 BY 200)"

1680 END SUB

1690 SUB SHEETS

1700 LOCATE 4,51:PRINT "PAGE SIZE (YIN)"

1710 LOCATE 5,54:PRINT "8.5 BY 11.0 (A)"

1720 LOCATE 6,53:PRINT "11.0 BY 14.0 (AA)"

1730 LOCATE 7,53:PRINT "11.0 BY 17.0 (B)"

1740 LOCATE 8,53:PRINT "17.0 BY 22.0 (C)"

1750 LOCATE 9,53:PRINT "22.0 BY 34.0 (D)"

1760 END SUB

Reference.

Epps, James W., and Corey, Marion W. (1990 (Jul)). "Computerized ap-
plications for station equations," Journal of Computing in Civil Engineer-
ing, ASCE, 4(3),269-278.

Chapter 3 Utility Routines 59

4 Pricing Data

The pricing data file for the Camouflage Design program is named
PRICE.LAT and contains the structural and costing characteristics of each
item of material that the program uses. The purpose of this chapter is to
provide a detailed description of how this data file is organized, how the
data for individual material items within the data file are extracted by the
program, and how additional material data items may be incorporated into
the pricing data file. The pricing data file is not necessary for program ex-
ecution, but its existence will greatly enhance the input program function
when the primary project material's structural and costing characteristics
must be provided.

Pricing Data File Organization. The pricing data for the program are
contained in a random access data file named PRICE.LAT, which contains
130-byte records. The data file is divided into three major sections, as
follows:

(1) The first two 130-byte records contain 38 four-byte single
precision values. The first 37 values are the beginning record
numbers, which contain the five-character names of the
material items contained in the pricing file for each of the 37
acceptable use codes. The 38th value is the total number of
material items contained in the pricing data file. With 130-byte
records, the first 32 values of the beginning record numbers are
contained in the first record, leaving two blank bytes at the end
of the record. The second 130-byte record contains the
remaining five beginning record numbers and the total number
of material items contained in the pricing data file, leaving 106
blank bytes at the end of that record. The data from these two
records are maintained in the BEGAD() array and the NMARK
variable. Both of these variables are contained in the unlabeled
COMMON block. At the beginning of each major program
module, these data must be extracted from the PRICE.LAT data
file using the CVS function and stored in these variables so that
the data are available to the other routines within the program
module. The source codes for this initial data extraction (from
the MAIN program) are provided below:

6C Chapter 4 Pricing Data

G20 OPEN DD$+"PRICE.LAT" AS #5 LEN=130:FIELD #5, 130 AS BG$

630 GET #5,1:FOR I=1 TO 32:JZ=(I-1)*4+I

640 BEGAD(I)=CVS(MID$(BG$,JZ,4)):NEXT I

650 GET #5,2:FOR I=33 TO 37:JZ=(I-33)*4+I

660 BEGAD(I)=CVS(MID$(BG$,JZ,4)):NEXT I:NMARK=CVS(MID$(BG$,21,4))

(2) The next 77 records (record #3 through record #79) contain the
five-character names of the individual material items whose
data are contained in the pricing data file. A maximum of
2,002 material items are allowed, requiring a total of 10,100
bytes. At 130 bytes per record, a total of 77 records are
required. These five-character names are extracted from record
numbers 3 through 79 and stored in the string array MARK,
which is contained in the unlabeled COMMON block. The
source codes for this data extraction (from the MAIN program)
are provided below:

670 FOR 1=3 TO 79:GET #5,I:IJ=(I-3)*26:FOR JZ=I ,

680 KZ=(JZ-1)*5+1:MARK(IJ+JZ)=MID$(BG$,KZ,5• J'•3ZizX I

(3) The remaining records (record #80 through ir I of
record #2081) contain the structural, costing., wAiu descriptive
data for each material item in the pricing data file. These data
are not loaded into any program arrays like the previous data
were, but are accessed directly from the data file as they are
needed. The organization of each of these 130-byte records
must be defined before any of the material characteristics can
be extracted from the data file, however. Each 130-byte record
contains 18 data items associated with each material. The
number of bytes associated with each of these data items is
stored in the LNGO array and defined with a READ/DATA
statement at the beginning of each major program module. The
LNG() is contained in the GENERAL-labeled COMMON
block. The source codes for the initialization of the LNGO
array and the description of the file record organization are
provided below:

260 DATA 6,4,4,2,4,2,4,30,30,4,4,4,4,4,4,8,4,8

280 FOR I=1 TO 18:READ LNG(I):NEXT I

700 FOR MZ-1 TO 18:SM=0:IF MZ-1 THEN 720

710 FOR NZ=1 TO MZ-I:SM=SM+LNG(NZ):NEXT NZ

720 FIELD #5, SM AS DUMMS, LNG(MZ) AS PRD$(MZ):NEXT MZ

The relative location within the 130-byte record, description, and field
length of each of the 18 individual material characteristics are provided
below:

Chapter 4 Pricing Data 61

Data Item Description Field Length

1 ITEM MARK 6

2 PRIMARY CATEGORY 4

3 MATERIAL SIZE (LENGTH OR AREA) 4

4 PRICING UNIT OF MEASURE 2

5 ALLOWABLE STRENGTH (YIELD) 4

6 ESTIMATE UNIT OR MEASURE 2

7 ESTIMATE UNIT WEIGHT (WET OR DRY) 4

8 FEDERAL STOCK NUMBER 30

9 FABRICATED PART/USE DESCRIPTION 30

10 MODULUS OF ELASTICITY 4

11 CROSS-SECTIONAL AREA OR THICKNESS 4

12 MOMENT OF INERTIA 4

13 COEFFICIENT OF THERMAL EXPANSION 4

14 ANCHOR SIZE (HELIX, INCHES) 4

15 ITEM UNIT PRICE 4

16 ERECTION TIME (MAN-HRS) 8

17 DRAG COEFFICIENT (NET ONLY) 4

18 CURRENTLY NOT IN USE 8

The MARK of each data item is made up of the five-character name of
the material data item and the one-character use code. The MARK name
can be any five characters, but the use code must correspond to the as-
signed category of the data item. The acceptable use codes are as follows:
(1) a blank character, (2) the numerics 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and
(3) the alpha-numerics A through Z. The total of 37 acceptable use codes
correspond to the maximum subscript on the BEGADO array which is lo-
cated in the unlabeled COMMON block. Care must be taken in the assign-
ment of the use code for a material item because the material screens for
support members, tension members, netting, andanchors are initially
filled during the input program function from the pricing data file (Chap-
ter 5 CAMINP Routine). A complete description of the material use codes
is provided in a later section of this chapter which describes the
EDITPRIC program. This program allows user to add material data
items to the existing version of the PRICE.LAT data file. The use codes
provided in Table 2 have been assigned to the current version of the
PRICE.LAT data file:

62 Chapter 4 Pricing Datp

Table 2

Current Pricing Data File Use Codes and Descriptions

Use Code Description

A Anchors and related materials

B Bolts and primary connectors

C Structural tension members (cables)

E Eyebolts

M Pulleys

N Netting

P Structural support members

R Rings and snap connectors

T Turnbuckles

The PRIMARY CATEGORY of each item of material is a four-character
descriptor which is used to further categorize each data item. The only
use of this data item is in the material summaries which are displayed in
the output routines. The material SIZE is a four-byte numeric for the unit
size of the item. The PRICING UNIT OF MEASURE is a two-character
descriptor which indicates how the item is priced, i.e., by the foot, square
yard, square foot, pound, etc. The ALLOWABLE STRENGTH of the item
is a four-byte numeric which represents the yield or tearing strength of the
item expressed in kips/square inch (ksi). The ESTIMATE UNIT OF
MEASURE is a two-character descriptor which indicates how the item is
priced in the Camouflage Program. The pricing and estimate units of
measure should be the same for each data item. The UNIT WEIGHT of
the item is the four-byte numeric weight per unit of measure for the data
item, i.e., pounds/foot, pounds/square yard, etc. The FEDERAL STOCK
NUMBER and FABRICATED PART DESCRIPTION are 30-character
descriptors of the item. No current use is being made of the federal stock
number, but later versions of the program can adjust inventory levels if
desired. The part description is displayed both in the input screens and
the final program output. The MODULUS OF ELASTICITY is a four-
byte numeric in kips/square inch for the structural items and anchors only.
The CROSS-SECTION AREA OR THICKNESS is a four-byte numeric in
square inches for the structural items or inches for the netting items. The
MOMENT OF INERTIA is a four-byte numeric in inches4 for the support
members only. The COEFFICIENT OF THERMAL EXPANSION is a
four-byte numeric in inches (x 106) per degree F for the tension membe-s
only. The ANCHOR SIZE is a four-byte numeric for the diameter of the
helix, in inches, for the anchors only. The UNIT PRICE is the four-byte
unit cost of the item in dollars per unit of measure. The ERECTION
TIME is a four-byte numeric for the unit erection time in man-hours for
the support members and anchors only. The erection time for the support

Chapter 4 Pricing Data 63

members should include the excavation time for the hole and establish-
ment of the base support system. This data .tem is not being used in the
current version of the program, however. The DRAG COEFFICIENT is
the four-byte numeric for the netting materials only. The last data item is
not defined in the current version of the program, but provides an eight-
byte space at the end of each 130-byte record.

Material Data Extraction. The individual data items associated
with a single material item are extracted from the pricing data file,
PRICE.LAT, using the LOOKPRIC routine as described in Chapter 3
Utility Routines of this document. Before any such data extraction can
occur, however, the following program functions must be accomplished:

(1) The PRICE.LAT data file must have been OPENed as a random
access file with 130-byte records with an accompanying FIELD
statement,

(2) The BEGADO (single precision beginning record numbers for
each use code) and MARKO (five-character material names)
and the variable NMARK (single precision total number of
material items) must have been loaded from the PRICE.LAT
data file,

(3) The LNGO array must have been defined either by
DATA/READ statements or by arithmetic assignment
statements, and

(4) The PRD$O array must have been defined by the FIELD
statement for the individual material item records (record
numbers 80 through 2081).

The source codes required to accomplish the four program functions
are provided below:

80 DIM DUM(135),DUM$(135),V(20),B$(20),LNG(18)

90 COMMON SHARED/GENERAL/DUMo,V),LNG(,DUM$(),B$(),A$

260 DATA 6,4,4,2,4,2,4,30,30,4,4,4,4,4,4,8,4,8

280 FOR I-i TO 18:READ LNG(I):NEXT I

620 OPEN DD$+"PRICE.LAT" AS #5 LEN=130:FIELD #5, 130 AS BG$

630 GET #5,1:FOR 1=1 TO 32:JZ=(I-1)*4+1

640 BEGAD(I)-CVS(MID$(BG$,JZ,4)):NEXT I

650 GET #5,2:FOR 1=33 TO 37:JZ=(I-33)*4+1

660 BEGAD(I)=CVS(MID$(BG$,JZ,4)):NEXT I:NMARK=CVS(MID$(BG$,21,4))

670 FOR I3 TO 79:GET #5,I:IJ=(I-3)*26:FOR JZ=1 TO 26

680 KZ-(JZ-I)*5+1:MARK(IJ+JZ)=MID$(BG$,KZ,5):NEXT JZ:NEXT I

690 REM

700 FOR MZ=1 TO 18:SM=0:IF MZ=1 THEN 720

710 FOR NZ=1 TO MZ-I:SM-SM+LNG(NZ):NEXT NZ

720 FIELD #5, SM AS DUMM$, LNG(MZ) AS PRD$(MZ):NEXT MZ

64 Chapter 4 Pricing Data

When these four program functions have been accomplished, the
PRICE.LAT data file may be searched for any six-character (five-character
name and one-character use code) material name using the LOOKPRIC
routine. The two arguments to the LOOKPRIC routine are the six-character
name to locate and the string variable PRST$ which contain the six-character
material name and four-character primary category of the material item. If
the name of the material item is not found in the PRICE.LAT data file, a
blank string PRST$ is returned. The 18 individual material characteristics
are stored in the PRD$0 array, which is contained in the unlabeled COM-
MON block, and may be extracted into other data arrays for use by the pro-
gram as desired. The source codes which illustrate the extraction of these
data during the input program function are provided below:

2100 DIM POLNAME$(30)

2110 NPOL-0:NS=BEGAD(27):IF NS=0 THEN 2170

2120 NE-BEGAD(28)-1

2130 FOR I-NS TO NE:GET #5,I+79

2140 NPOL-NPOL+I:POLNAME$ (NPOL)=PRD$(1)

2150 NEXT I

2160 REM

2170 KEYZ-0:NPR=3:NYES=0

2270 NSTRT=I:IF NPR=4 THEN NSTRT=16

2280 NEND-NSTRT+14

2290 FOR I=NSTRT TO NEND:IJ-(I-NSTRT)*NAD(NPR)

2300 FOR J=1 TO NAD(NPR):VAR$(IJ+J)=" ":NEXT J

2310 IF I>NPOL THEN 2380

2320 VAR$(IJ+1)="N"

2330 VAR$(IJ+2)-POLNAME$(I) :CALL LOOKPRIC(POLNAME$(I),PRST$)

2340 VAR$(IJ+3)=STR$(CVS(PRD$(3))) :VAR$(IJ+4)=STR$(CVS(PRD$(5)))

2350 VAR$(IJ+5)=STR$(CVS(PRD$(10))):VAR$(IJ+6)=STR$(CVS(PRD$(11)))

2360 VAR$(IJ+7)-STR$(CVS(PRD$(12))):VAR$(IJ+8)=STR$(CVS(PRD$ (15)))

2370 VAR$(IJ+9)=MID$(PRD$(9),1,15)

2380 NEXT I:GOTO 2420

2390 REM

2400 CALL DSKRD(FREC,NDUM,DUMoDUM$())

2410 REM

2420 CALL POLSCRN(PN$,RN$) :IST=1:IEND=NLOC

The source codes shown provide for the extraction of the material data
contained in the PRICE.LAT data file relating to the support members.
The variable NPOL contains the number of support members extracted
from the pricing data file. The use code for the support members is 'P',
and the beginning address for the material items with this use code (NS) is
stored in BEGAD(27). Note that the blank use code, 10 numeric use
codes, and use codes A through 0 occupy the first 26 addresses of the
BEGADO array. The ending record number (NE) for use code 'P' is one
less than the beginning record nu-nber for use code 'Q' stored in
BEGAD(28). For each record contained between NS and NE, the record
is extracted using the GET #5 function, and the six-character name is ex-
tracted from PRD$(1) and stored in the program array POLNAME$(). Up

Chapter 4 Pricing Data 65

to 30 six-character names may be extracted in this manner. In later sec-
tions of the source codes, the material characteristics of each name in the
POLNAME$O anay are extracted using the LOOKPRIC routine. For
each item found in the pricing data file, the critical characteristics of each
support member are extracted from the PRD$() array and stored in the
VAR$() array. This will allow the data to be retained during subsequent
CALLs to the LOOKPRIC routine, and also eventually will allow the data
to be stored in the project data file when the DSKWRT routine is CALLed.

Addition of Material Items to the Pricing Data File. In the first sec-
tion of this chapter, the statement was made that the contents of the
PRICE.LAT data file were not essential for the proper execution of the cur-
rent version of the Camouflage Program. If the PRICE.LAT data file was
nonexistent (or empty), the user would be required to input at least one
support member, one tension member, one netting material, and one
anchor with each material's designated characteristics. Once these charac-
teristics are provided during an input program function, they are retained
only for the project name and revision number specified, and are not avail-
able for other project names and/or revision numbers. Only material data
items that are currently stored in the PRICE.LAT data file are available
for all project names and revision numbers. This section is intended to
describe how one or more material data items can be included in the
PRICE.LAT data file.

The stand-alone executable program EDITPRIC has been provided in
the library of program modules, and is to be used to add material names
and associated data to the contents of the pricing data file. The following
conventions must be adhered to while adding data to the pricing data file:

(1) Existing material MARK names shculd not be duplicated; if the
MARK name exists in the current version of the PRICE.LAT
data file, subsequent data inputs will replace the current data in
the data file. The first five characters of the MARK name can
be any combination of letters and/or numbers or symbols, but
the user is encouraged to use a systematic naming convention to
avoid later confusion. The sixth character of the MARK name
will be the use code of the data item.

(2) The use code for the material item to be added must follow the
convention of the current list of use codes incorporated in the
program (see Table 2 above). If a new use code is to be
defined, a record of this use code must be maintained, so that
when similar materials (with the same use code) are added, the
same use code will be used. Simply stated: if an additional
support member is to be included in the PRICE.LAT data file,
the use code for that item must be specified as 'P'. The same
applies for the other items listed in Table 2 above.

(3) Careful attention must be given to the required units of each
data item. The current version of the Camouflage Program

66 Chapter 4 Pricing Data

assumes that the convention unit of distance is provided in feet,
area in square feet, material strengths in either kips or kips per
square inch, and so on.

The user's guide for the EDITPRIC program is provided in Appendix A.
The source codes for the EDITPRIC program are provided below:

10 REM PRICE DATA FILE MAINTENANCE PROGRAM EDITPRIC.BAS

20 REM LATEST REVISION 01/14/91 JWE

30 REM

40 REM ITEM FIELD LENGTH

50 REM 1. ITEM MARK 6

60 REM 2. PRIMARY CATEGORY 4

70 REM 3. MATERIAL SIZE (LENGTH OR AREA) 4

80 REM 4. PRICING UNIT OF MEASURE 2

90 REM 5. ALLOWABLE STRENGTH (YIELD) 4

100 REM 6. ESTIMATE UNIT OF MEASURE 2

110 REM 7. ESTIMATE UNIT WEIGHT (WET OR DRY) 4

120 REM 8. FEDERAL STOCK NUMBER 30

130 REM 9. FABRICATED PART/USE DESCRIPTION 30

140 REM 10. MODULUS OF ELASTICITY 4

150 REM 11. CROSS-SECTION AREA OR THICKNESS 4

160 REM 12. MOMENT OF INERTIA 4

170 REM 13. COEFFICIENT OF THERMAL EXPANSION 4

180 REM 14. ANCHOR SIZE (HELIX, INCHES) 4

190 REM 15. ITEM UNIT PRICE 4

200 REM 16. ERECTION TIME (MAN-HRS) 8

210 REM 17. DRAG COEFFICIENT (NET ONLY) 4

220 REM 18. NOT IN USE CURRENTLY 8

230 REM

240 REM TOTAL BYTES PER ITEM 130

250 REM

260 REM THE DATA ARE STORED BY THE PRC$() ARRAY - DIMED

PRC$(18)

270 REM

280 REM PRICE.LAT FILE ORGANIZATION - TOTAL OF 2081 RECORDS

290 REM RECORD 1 - BEGAD(1) THRU BEGAD(32) - 4 BYTES EACH (128)

300 REM RECORD 2 - BEGAD(33) THRU BEGAD(37) & NMARK - 24 BYTES

310 REM RECORDS 3 THRU 79 - FIVE CHARACTER MARKS AT 26/RECORD

320 REM NOTE: 26*5=130 26*77=2002

330 REM RECORDS 80 THRU 2081 (2002) - MATERIAL DATA FOR EACH

MARK

340 REM NOTE: ONE MARK PER RECORD (130 BYTES)

350 REM

360 DIM LPTS(135),FLD(135),VAR$(135),IREC(31),NAD(31),PRD$(18)

370 DIM BEGAD(37),MARK(2002) AS STRING*5

380 COMMON SHARED NLOC,NAD(,FLD(,LPTS(,IREC(,

NMARKBEGADo,DL$,DF$,AA$,VAR$(),PRD$(),MARK() AS STRING*5

390 COLOR 15,1,1:CLS

400 LOCATE 5,25:PRINT "PRICING DATA GENERATION"

Chapter 4 Pricing Data 67

410 LOCATE 7,35:PRINT "for"

420 LOCATE 9,23:PRINT "U. S. Army Corps of Engineers"

430 LOCATE 14,29:PRINT "P. 0. Box 631"

440 LOCATE 16,26:PRINT "Vicksburg, MS 39180"

450 LOCATE 19,29:PRINT "Copyright 1990"1

460 LOCATE 24,2:PRINT "Press any key to continue..

470 A$=INKEY$:IF LEN(A$)0O THEN 470

480 REM

490 REM

500 DIM LNG(18),V(20),BS(20),DUM(135),DUMS(135),

505 DIM LOCS(18),ASCIS(37),NOITM(37)

510 DATA 6,4,4,2,4,2,4,30,30,4,4,4,4,4,4,8,4,8

520 DATA 546, 646, 746, 846, 946, 1046, 1146,1246,1346,1446,1546,

1646, 1746, 1846

530 DATA 1946,2046,2146,2246

540 DATA ,~"" 2,~t
4

,~"" ~l 8,~,"" B,""

550 DATA G,"""1,J",","L,"","""0,P", ,R",","T

560 DATA "X","Y","Z"

570 FOR 1Z-1 TO 18:READ LNGCIZ):NEXT IZ

580 FOR IZ-1 TO 18:READ LOCS(IZ):NEXT IZ

590 FOR 1Z1l TO 37:READ ASCIS(IZ):NEXT IZ

600 OPEN "COMFIL" AS #1 LEN=128:FIELD #1,. 128 AS BA$

610 GET #1,1:RNDT=CVS(BAS):GET #1,3:DLNUM=CVS(BA$)

620 GET *1,4:DD$=MIDS(BAS,1,1)+":":GET *1,5:PGVER$=BA$

630 CLOSE #1

640 REM

650 REM INITIALIZE PRICING VARIABLES

660 FOR IZ=1 TO 37:BEGAD(IZ)-0:NOITM(IZ)=0:NEXT IZ:NMAPK=0

670 FOR IZ-1 TO 2002:MARK(IZ)=" .:NEXT IZ

680 REM

690 NLOC=18:FOR I=1 TO NLOC:LPTS(I)=LOCS(I):NEXT I

700 FOR I-1 TO NLOC:FLD(I)-LNG(I):NEXT I

710 OPEN DD$+"PRICE.LAT" AS #1 LEN=130:FIELD #1, 130 AS BGS

720 GET *1,1:FOR IZ1l TO 32:JZ=(IZ-1)*4+1

730 BEGAD(IZ)-CVS(MID$(BGS,JZ,4)):NEXT IZ

740 GET #1,2:FOR IZ-33 TO 37:JZ=(IZ-33)*4+1

750 BEGAD(IZ)-CVS(MIDS(BGS,JZ,4)):NEXT IZ:NREC=CVS(MIDS(BG$,21,4))

760 IF NREC=0 THEN 850

770 FOR IZ-3 TO 79:GET #1,IZ:IJ=(IZ-3)*26:FOR JZ=1 TO 26

780 KZ-(JZ-1)*5+1:MARK(IJ+JZ)-MID$(BGS,KZ,5):NEXT JZ:NEXT IZ

790 FOR IZ=1 TO 36:IF BEGAD(IZ)=0 THEN 810

800 NOITM(IZ)=BEGAD(IZ+1)-BEGAD(IZ)

810 NEXT IZ

820 IF BEGAD(37)>0 THEN NOITM(37)=NREC-BEGAD(37)+1

830 REM

840 REM

850 CLS:AS="INPUT, EDIT, DELETE, DISPLAY OR END (IN/EDIDE/DI/END)"

855 PRINT:PRINT A$;:INPUT A$

68 Chapter 4 Pricing Data

860 IF MID$(A$,1,2)="EN" OR MID$(A$,1,2)="en" THEN 3640

870 IF MID$(A$,1,2)="ED" OR MID$(A$,1,2)="ed" THEN 1880

880 IF MID$(A$,1,2)="DE" OR MID$(A$,1,2)="de" THEN 2560

890 IF MID$(A$,1,2)="DI" OR MID$(A$,1,2)="di" THEN 3300

900 IF MID$(A$,1,2)="IN" OR MID$(A$,1,2)="in" THEN 970

910 COLOR 31,1,1:LOCATE 24,2

920 PRINT "Input must be IN/ED/DE/END - Try again

930 A$=INKEY$:IF LEN(A$)=0 THEN 930

940 COLOR 15,1,1:GOTO 850

950 REM

960 REM INPUT PROGRAM FUNCTION

970 IF DLNUM-1 THEN 1020

980 B$=" INput Function not allowed at this station - Use

EDit only"

990 COLOR 31,1,1:LOCATE 24,2:PRINT B$;

1000 A$=INKEY$:IF LEN(A$)=0 THEN 1000

1010 COLOR 15,1,1:GOTO 850

1020 FOR IZ-1 TO 18:IZS-0:IF IZ=1 THEN 1040

1030 FOR JZ=1 TO IZ-1:IZS=IZS+LNG(JZ):NEXT JZ

1040 FIELD #i, IZS AS DUMM$, LNG(IZ) AS PRD$(IZ):NEXT IZ

1050 REM

1060 CLS:PRINT:INPUT "Input Item Mark Index or END";A$

1070 IF A$="END" OR A$="end" THEN 1750

1080 CALL BLANK(A$,NBLK):IF NBLK-0 THEN 1060

1090 IF LEN(A$)-6 THEN 1110

1100 JZ=6-LEN(A$):FOR IZ=1 TO JZ:A$=A$+" ":NEXT IZ

1110 US$=MID$(A$,6,1) :NOASC=ASC(US$)

1120 IF NOASC=32 THEN NOASC=1

1130 IF NOASC>-48 AND NOASC<-57 THEN NOASC-NOASC-46

1140 IF NOASC>-65 AND NOASC<-90 THEN NOASC-NOASC-53

1150 IF NOASC>=97 AND NOASC<=122 THEN NOASC=NOASC-85

1160 IF NOASC<-0 THEN 1210

1170 IF BEGAD(NOASC)=0 THEN BEGAD(NOASC)-1

1180 NS-BEGAD(NOASC):GOTO 1270

1190 REM

1200 REM INVALID MARK INPUT

1210 B$=" Item Mark Index \ \ is invalid - TRY AGAIN"

1220 COLOR 31,1,1

1230 LOCATE 24,2:PRINT USING B$;A$;

1240 A$-INKEY$:IF LEN(A$)-0 THEN 1240

1250 COLOR 15,1,1:GOTO 1060

1260 REM

1270 IF NOITM(NOASC)=0 THEN IZ=NS:GOTO 1380

1280 NE=NS+NOITM(NOASC)-1

1290 FOR IZ-NS TO NE:IF MID$(A$,1,5)<MARK(IZ) THEN 1380

1300 NEXT IZ:IZ-NE+1

1310 REM

1320 REM IZ IS RECORD NUMBER FOR NEW RECORD

1330 REM ALL DATA RECORDS FROM IZ TO NREC MUST BE MOVED DOWN

1335 REM ONE (+79)

Chapter 4 Pricing Data 69

1340 REM EACH MARK() FROM IZ TO NREC MUST BE MOVED DOWN ONE

1350 REM EACH BEGAD() FROM NOASC+1 TO 37 MUST BE INCREASED BY

1355 REM ONE

1360 REM NREC MUST BE INCREASED BY ONE

1370 REM

1380 IF NOASC=37 THEN 1440

1390 REM ADJUST BEGAD() ARRAY

1400 FOR KZ-NOASC+1 TO 37

1405 IF BEGAD(KZ)> 0 THEN BEGAD(KZ)=BEGAD(KZ)+1

1410 IF BEGAD(KZ)=0 THEN BEGAD(KZ)-2

1420 NEXT KZ

1430 REM SHIFT RECORDS FROM IZ TO NREC DOWN ONE RECORD

1440 IF NREC=0 THEN 1480

1450 FOR KZ-NREC TO IZ STEP -I:MARK(KZ+1)=MARK(KZ)

1460 KREC-KZ+79:GET #1,KREC:PUT #1,KREC+L:NEXT KZ

1470 REM INCREASE NREC

1480 NREC-NREC+1:NOITM(NOASC)=NOITM(NOASC)+l:NOREC=IZ+79

1490 FOR KZ-1 TO 18:VAR$(KZ)-" ":NEXT KZ:VAR$(1)-MID$(A$,1,6)

1500 IST=1:IEND=NLOC

1505 CALL PRICING(NOREC):CALL SCRNDUMP(IST,IEND)

1510 LOCATE 24,2:PRINT "Press <ESC> when input is complete

1520 CALL GENINP(IST, IEND, LAST):IF LAST< > 27 THEN 1520

1530 REM

1540 REM CHECK TO INSURE MARK HAS NOT BEEN CHANGED

1550 IF VAR$(1)=MID$(A$,1,6) THEN 1630

1560 COLOR 31,1,1:LOCATE 24,2

1570 B$(1)=" Mark \ \ cannot be changed - Use EDit Function"

1580 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 1580

1590 PRINT USING B$(1);MID$(A$,1,6);

1600 C$=INKEY$:IF LEN(C$)=0 THEN 1600

1610 VAR$(1)=MID$(A$,1,6):COLOR 15,1,1:GOTO 1500

1620 REM

1630 LSET PRD$(1)=VAR$(1):LSET PRD$(2)=VAR$(2)

1635 LSET PRD$(3)=MKS$(VAL(VAR$(3)))

1640 LSET PRD$(4)=VAR$(4):LSET PRD$(5)=MKS$(VAL(VAR$(5)))

1645 LSET PRD$(6)=VAR$(6)

1650 LSET PRD$(7)=MKS$(VAL(VAR$(7)))

1660 LSET PRD$(8)=VAR$(8):LSET PRD$(9)=VAR$(9)

1670 FOR KZ=10 TO 15:LSET PRD$(KZ)=MKS$(VAL(VAR$(KZ))):NEXT KZ

1680 LSET PRD$(16)=VAR$(16):LSET PRD$(17)=MKS$(VAL(VAR$(17)))

1690 LSET PRD$(18)=VAR$(18):PUT #1,NOREC

1700 MARK(IZ)=MID$(VAR$(1),1,5)

1710 REM

1720 GOTO 1060

1730 REM

1740 REM END OF INPUT - UPDATE BEGAD() ARRAY IN RECORDS 1 AND 2

1750 FIELD #i, 130 AS BG$

1760 A$="":FOR IZ=1 TO 32:A$=A$+MKS$(BEGAD(IZ)):NEXT IZ

1770 LSET BG$=A$:PUT #1,1

1780 A$="":FOR IZ=33 TO 37:A$=A$+MKS$(BEGAD(IZ)) :NEXT IZ

70 Chapter 4 Pricing Data

1790 A$-A$+MKS$(NREC):LSET BG$=A$:PUT #1,2

1800 REM

1810 REM UPDATE MARK() IN RECORDS 3 THRU 79

1820 FOR IZ=3 TO 79:IJ-(IZ-3)*26+1:IK=IJ+25

1830 A$="":FOR JZ=IJ TO IK:A$=A$+MARK(JZ):NEXT JZ

1840 LSET BG$=A$:PUT #1,IZ:NEXT IZ

1850 GOTO 850

1860 REM EDIT PROGRAM FUNCTION

1870 REM

1880 IF NREC > 0 THEN 1960

1890 COLOR 31,1,1:LOCATE 24,2

1900 B$(1)=" PRICE.LAT data file does not exist - Use

INput Function"

1910 IF LEN(B$(1)) <78 THEN B$(1)=B$(1)+" ":GOTO 1910

1920 PRINT B$(1);

1930 C$-INKEY$:IF LEN(C$)=0 THEN 1930

1940 COLOR 15,1,1:GOTO 850

1950 REM

1960 FOR IZ=1 TO NLOC:IZS=0:IF IZ=1 THEN 1980

1970 FOR JZ=1 TO IZ-1:IZS=IZS+LNG(JZ):NEXT JZ

1980 FIELD #1, IZS AS DUMM$, LNG(IZ) AS PRD$(IZ):NEXT IZ

1990 CLS:PRINT:INPUT "Input Item Mark Index or END";A$

2000 IF A$-"END" OR A$-"end" THEN 850

2010 CALL BLANK(A$,NBLK):IF NBLK=0 THEN 1990

2020 IF LEN(A$)=6 THEN 2040

2030 JZ=6-LEN(A$):FOR IZ=1 TO JZ:A$=A$+" ":NEXT IZ

2040 US$-MID$(A$,6,1) :NOASC=ASC(US$)

2050 IF NOASC-32 THEN NOASC-1

2060 IF NOASC>=48 AND NOASC<=57 THEN NOASC=NOASC-46

2070 IF NOASC>-65 AND NOASC<=90 THEN NOASC=NOASC-53

2080 IF NOASC>=97 AND NOASC<=122 THEN NOASC=NOASC-85

2090 IF NOASC<-0 THEN 2160

2100 IF BEGAD(NOASC)=0 THEN 2160

2110 NS-BEGAD(NOASC):IF NOITM(NOASC)=0 THEN 2160

2120 NE-NS+NOITM(NOASC)-1

2130 FOR IZ-NS TO NE:IF MID$(A$,1,5)=MARK(IZ) THEN 2240

2140 NEXT IZ

2150 REM DID NOT FIND PRM$ IN CURRENT PRICING LIST

2160 B$-" Item Mark Index \ \ not in pricing data

- TRY AGAIN"

2170 COLOR 31,1,1

2180 LOCATE 24,2:PRINT USING B$;A$;

2190 A$-INKEY$:IF LEN(A$)=0 THEN 2190

2200 COLOR 15,1,1:GOTO 1990

2210 REM

2220 REM ITEM MARK INDEX FOUND IN PRICE.LAT FILE - DATA IN RECORD

2225 REM NUMBER IZ+79

223u REM LOAD RECORD INTO VAR$() ARRAY AND DISPLAY FOR EDIT

2240 NOREC=IZ+79:GET #1,NOREC

2250 FOR IZ=1 TO 2:VAR$(IZ)=PRD$(IZ):NEXT IZ

Chapter 4 Pricing Data 71

2260 VARS(3)-STRS(CVS(PRDS(3))):VAR$(4)=PRDS(4)

2270 VAR$(5)=STRS(CVS(PRDS(5))):VAR$(6)=PRDS(6)

2280 VAR$(7)-STR$ (CVS(PRDS (7)))

2290 FOR IZ=8 TO 9:VAR$(IZ)=PRDS(IZ):NEXT IZ

2300 FOR IZ=10 TO 15:VARS(IZ)-STR$(CVS(PRDS(IZ))) :NEXT IZ

2310 VAR$(16)=PRD$(16):VIAR$(17)-STRS(CVS(PRD$(17)))

2320 VAR$(18)=PRDS (18)

2330 IST=1:IEND-NLOC

2335 CALL PRICING(NOREC) :CALL SCRNDUMP (IST, lEND)

2340 LOCATE 24,2:PRINT "Press <ESC> when input is

complete..."

2350 CALL GENINP(IST,IEND,LAST):IF LAST< >27 THEN 2350

2360 REM

2370 REM CHECK TO INSURE MARK HAS NOT BEEN CHANGED

2380 IF VAR$(1)=MID$(AS,1,6) THEN 2460

9390 COLOR 31,1,1:LOCATE 24,2

2400 B$(1)=" Mark \ \ cannot be changed - Use

INput Function"

2410 IF LEN(BS(l))<7a THEN B$(l)=B$(1)+" ':GOTO 2410

2420 PRINT USING B$(1);MID$(A$,1,6);

2430 C$=INKEY$:IF LEN(C$)0O THEN 2430

2440 VAR$(1)=MID$(AS,1,6):COLOR 15,1,1:GOTO 2330

2450 REM

2460 LSET PRD$(1)=VAR$(l):LSET PRD$(2)=VAR$(2)

2465 LSET PRD$(3)=MKSS(VAL(VARS(3)))

2470 LSET PRD$(4)-VAR$(4):LSET PRD$15)=MKSS(VAL(VAR$(5)))

2475 LSET PRD$(6)=VARS(6)

2480 LSET PRD$(7)=MKS$(VAL(VAR$(7)))

2485 LSET PRD$(17)=MKS$(VAL(VARS(17)))

2490 LSET PRD$(8)=VAR$(8):LSET PRD$(9)=VAR$(9):LSET

PRDS (16) -VARS (16)

2500 FOR IZ=10 TO 15:LSET PRD$(IZ)=MKSS(VAL(VARS(IZ))):NEXT IZ

2510 LSET PRDS(16)=VAR$(16):LSET PRD$(17)=r4KSS(VAL(VAR$(17)))

2520 LSET PRDS(18)=VARS(18):PUT #1,NOREC

2530 GOTO 1990

2540 REM

2550 REM DELETE PROGRAM FUNCTION

2560 IF NREC>0 THEN 2640

2570 COLOR 31,l,1:LOCATE 24,2

2580 BS(1)-" PRICE.LAT data file does not exist - Use

INput Function"

2590 IF LEN(BS(1))<78 THEN B$(1)=B$(1)+" ":GOTO 2590

2600 PRINT B$(1);

2610 CS=INKEY$:IF LEN(C$)=0 THEN 2610

2620 COLOR 15, 1,1:GOTO 850

2630 REM

2640 IF DLNUM-1 THEN 2670

2650 BS=" DElete Function not allowed at this station -Use

EDit only"

2660 GOTO 990

72 Chapter 4 Pricing Data

2670 FOR IZ=l TO NLOC:IZS=0:IF IZ=1 THEN 2690

2680 FOR JZ=I TO IZ-1:IZS=IZS+LNG(JZ):NEXT JZ

2690 FIELD #1, IZS AS DUMM$, LNG(IZ) AS PRD$(IZ):NEXT IZ

2700 CLS:PRINT:INPUT "Input Item Mark Index or END";A$

2710 IF A$S"END" OR A$="end" THEN 1750

2720 CALL BLANK(A$,NBLK):IF NBLK=O THEN 2700

2730 IF LEN(A$)=6 THEN 2750

2740 JZ=6-LEN(A$):FOR IZ=1 TO JZ:A$-A$+" ":NEXT IZ

2750 US$=MID$(A$,6,1) :NOASC=ASC(US$)

2760 IF NOASC=32 THEN NOASC=1

2770 IF NOASC>=48 AND NOASC<=57 THEN NOASC=NOASC-46

2780 IF NOASC>=65 AND NOASC<=90 THEN NOASC=NOASC-53

2790 IF NOASC>=97 AND NOASC<=122 THEN NOASC=NOASC-85

2800 IF NOASC<=0 THEN 2870

2810 IF BEGAD(NOASC)-0 THEN 2870

2820 NS=BEGAD(NOASC):IF NOITM(NOASC)=0 THEN 2870

2830 NE=NS+NOITM(NOASC)-1

2840 FOR IZ=NS TO NE:IF MID$(A$,1,5)=MARK(IZ) THEN 2950

2850 NEXT IZ

2860 REM DID NOT FIND PRM$ IN CURRENT PRICING LIST

2870 B$=" Item Mark Index \ \ not in pricing data - TRY

AGAIN"

2880 COLOR 31,1,1

2890 LOCATE 24,2:PRINT USING B$;A$;

2900 A$SINKEY$:IF LEN(A$)-0 THEN 2900

2910 COLOR 15,1,1:GOTO 2700

2920 REM

2930 REM ITEM MARK INDEX FOUND IN PRICE.LAT FILE - DATA

IN IZ+79

2935 REM RECORD

2940 REM LOAD CONTENTS OF RECORD INTO VAR$() ARRAY AND DISPLAY

2945 REM FOR EDIT

2950 NOREC-IZ+79:GET #1,NOREC

2960 FOR IZ=1 TO 2:VAR$(IZ)=PRD$(IZ):NEXT IZ

2970 VAR$(3)=STR$(CVS(PRD$(3))):VAR$(4)=PRD$(4)

2980 VAR$(5)=STR$(CVS(PRD$(5))):VAR$(6)=PRD$(6)

2990 VAR$(7)=STR$(CVS(PRD$(7)))

3000 FOR IZ=8 TO 9:VAR$(IZ)=PRD$(IZ):NEXT IZ

3010 FOR IZ=10 TO 15:VAR$(IZ)=STR$(CVS(PRD$(IZ))):NEXT IZ

3C20 VAR$(16)=PRD$(16):VAR$(17)=STR$(CVS(PRD$(17)f)

3030 VAR$(18)=PRD$(18)

3040 IST=1:IEND-NLOC

3045 CALL PRICING(NOREC):CALL SCRNDUMP(IST,IEND)

3050 LOCATE 24,2:PRINT "Press <ESC> when input is

complete . . .";

3060 CALL GENINP(IST,IEND,LAST):IF LAST< >27 THEN 3060

3070 REM

3080 REM CHECK TO INSURE MARK HAS NOT BEEN CHANGED

3090 IF VAR$(1)=MID$(A$,1,6) THEN 3170

3100 COLOR 31,1,1:LOCATE 24,2

Chapter 4 Pricing Data 73

3110 B$(1)=" Mark \ \ cannot be changed - Use INput

Function"

3120 IF LEN(B$(1))<78 THEN B$(1)-B$(1)+" ":GOTO 3120

3130 PRINT USING B$(1);MID$(A$,1,6);

3140 C$=INKEY$:IF LEN(C$)=0 THEN 3140

3150 VAR$(1)=MID$(A$,1,6):COLOR 15,1,1:GOTO 3040

3160 REM

3170 B$(1)=" Delete this record: Mark \ \ - Are jou

sure??

3180 LOCATE 24,2:PRINT USING B$(1);A$;:LINE INPUT C$

3190 IF MID$(C$,1,1)="Y" OR MID$(C$,1,1)="y" THEN 3210

3200 GOTO 2700

3210 IF NOASC=37 THEN 3230

3220 FOR KZ=NOASC+1 TO 37:BEGAD(KZ)=BEGAD(KZ)-1:NEXT KZ

3230 IF IZ=NREC THEN 3270

3240 FOR KZ=IZ TO NREC-1:MARK(KZ)=MARK(KZ+1):NEXT KZ

3250 FOR KZ-IZ TO NREC-1:KREC-KZ+79

3260 GET #1,KREU+1:PUT #1,KREC:NEXT KZ

3270 NREC=NREC-1:NOITM(NOASC)-NOITM(NOASC)-1:GOTO 2700

3280 REM

3290 REM DISPLAY PROGRAM OPTION

3300 CLS:PRINT SPC(31);:PRINT "PRICE.LAT CONTENTS"

3310 FOR IZ-1 TO 3:PRINT SPC(2);

3315 PRINT "NUM CHAR BEGAD NOITEM";

3320 NEXT IZ:PRINT "..

3330 AS-" ## \\ #### ####"

3340 FOR IZ=l TO 12:FOR JZ=I TO 3

3345 PRINT SPC(2);:ISUB-(JZ-1)*12+IZ

3350 PRINT USING A$;ISUB,ASCI$(ISUB),BEGAD(ISUB),NOITM(ISUB);

3360 NEXT JZ:PRINT " ":NEXT IZ

3370 ISUB-37:PRINT SPC(54);

3380 PRINT USING A$;ISUB,ASCI$(ISUB),BEGAD(ISUB),NOITM(ISUB)

3390 PRINT:PRINT USING " NO. RECORDS #### ";NREC

3400 LOCATE 24,2

3410 A$=INKEY$:IF LEN(A$)=0 THEN 3410

3420 REM

3430 CLS:PRINT:INPUT "LIST MARKS FOR USE CODE OR END ";AS

3440 IF A$="END" OR A$-"end" THEN 850

3450 CALL BLANK(A$,NBLK):IF NBLK=0 THEN IZ=1:GOTO 3490

3460 FOR IZ-2 TO 37:IF MID$(A$,1,1)=ASCI$.(IZ) THEN 3490

3470 NEXT IZ:GOTO 3430

3480 REM

3490 IF NOITM(IZ)>0 THEN 3530

3500 PRINT:PRINT " NO MARKS FOR USE CODE ";ASCI$(IZ)

3510 GOTO 3590

3520 REM

3530 PRINT:FOR JZ=I TO NOITM(IZ):ISUB=BEGAD(IZ)+JZ-1

3540 PRINT USING " #### \ \ ";ISUB,MARK(ISUB)

3550 IF INT(JZ/20)=JZ/20 THEN

3560 LOCATE 24,2:PRINT " Press any key to continue

74 Chapter 4 Pricing Data

3570 A$=INKEY$:IF LEN(A$)=0 THEN 3570

3580 CLS

3590 ENDIF

3600 NEXT JZ

3610 A$=INKEY$:IF LEN(A$)=0 THEN 3610

3620 GOTO 3430

3630 REM

3640 CLOSE

3650 END

3660 SUB PRICING(RECNO) STATIC

3670 REM UNIT PRICING DATA EDIT SCREEN

3680 REM

3690 CLS:LOCATE 1,25:PRINT "U. S. ARMY CORPS OF ENGINEERS"

3700 LOCATE 2,30:PRINT "UNIT PRICING DATA"

3710 LOCATE 3,3.PRINT USING "RECORD NO. #####";RECNO

3720 LOCATE 5,7:PRINT "ITEM MARK INDEX"

3730 LCCATE 6,7:PRINT "PRIMARY CATEGORY"

3740 LOCATE 7,7:PRINT "MATERIAL SIZE"

3750 LOCATE 8,7:PRINT "PRICING UNIT OF MEASURE"

3760 LOCATE 9,7:PRINT "ALLOWABLE STRENGTH (KSI)"

3770 LOCATE 10,7:PRINT "ESTIMATE UNIT OF MEASURE"

3780 LOCATE 11,7:PRINT "ESTIMATE UNIT WEIGHT (WET OR DRY)"

3790 LOCATE 12,7:PRINT "FEDERAL STOCK NUMBER"

3800 LOCATE 13,7:PRINT "FABRICATED PART/USE DESCRIPTION"

3810 LOCATE 14,7:PRINT "MODULUS OF ELASTICITY (10**6)"

3820 LOCATE 15,7:PRINT "X-SECT AREA/DIAMETER/THICKNESS"

3830 LOCATE 16,7:PRINT "MOMENT OF INERTIA"

3840 LOCATE 17,7:PRINT "COEFF OF THERMAL EXPANSION (10**-6)"

3850 LOCATE 18,7:PRINT "ANCHOR SIZE (HELIX, INCHES)"

3860 LOCATE 19,7:PRINT "ITEM UNIT PRICE"

3870 LOCATE 20,7:PRINT "ERECTION TIME (MAN-HRS)"

3880 LOCATE 21,7:PRINT "DRAG COEFFICIENT (NET ONLY)"

3890 LOCATE 22,7:PRINT "NOT IN USE CURRENTLY"

3900 END SUB

Chapter 4 Pricing Data 75

5 CAMINP Routine

The input and edit program functions of the Camouflage Program are
accomplished by the CAMINP routine. Two major program modules,
CAMINP.BAS and CAMOSCRN.BAS, are linked together to provide
these two program functions. The main calling routine is CAMINP which
is CALLed from the mainline routine MAIN. The CAMINP routine then
successively CALLs the input/edit routines for the general site informa-
tion (SITE routine), the camouflage structure gcrbmetry (GEOM routine),
the support member data (POLES routine), the netting data (NETS
routine), the tension member data (CABLE routine), and the anchor data
(ANCHOR routine). Each of these routines will be discussed in detail,
and, following the discussions, source codes will be provided for each
routine.

CAMINP Routine. The CAMINP routine is the main CALLing
routine for the input anxd edit program functions of the Camouflage Pro-
gram. The arguments to the CAMINP routine are the project name, PN$,
the project revision number, RN$, the next available record in the project
data file, NXRC, and the designated disk drive, DD$. The three data files
required for program operation, the project data file (device #1), the
screen field locations data file (DATA.LOC as device #2), and the screen
field lengths (DATA.FLD as device #3) are OPENed and designated by
device number before the CAMINP routine is CALLed. The CAMINP
routine has three major functions to perform, as follows:

(1) Successively CALL the input/edit routines for the general site
information, the camouflage structure geometry, the support
member data, the netting data, the tension member data, and the
anchor data,

(2) Close the field location and field leng'h data files, and

(3) Copy the resultLnt project data file from the desigr ated disk
drive (DD$) back to the floppy disk drive, and erase the projc,ýt
data file from the designated disk drive.

Input/Edit Routine Calls. Each of the five input/edit screen routines
will be called to allow the project data on each scieen to be modified as

76 Chapter 5 CAMINP Routine

desired by the user. The arguments of each routine are the project name
(PN$), revision number (RN$), the next available record in the project
data file (NXRC), and the termination keystroke indicator (KEYZ). At
the conclusion of each of these screen routines, the project data file will
be updated to record the data modifications that were accomplished. The
sequential movement from one screen to the next can be altered by the ter-
mination keystroke provided on each screen. If the <ES.C> key is used as
a termination keystroke, a forward progression through the screens is
provided. If the <Fl> key is used, a backward progression through the
screens is provided, thus allowing a review of the previous screens to en-
sure that the data provided are consistent in subsequent screens. The vari-
able KEYZ is used to indicate the termination keystroke in each CALLed
routine. If KEYZ is zero, the <ESC> key was used to terminate the input,
and a forward progression is provided. If KEYZ is one, the <Fl> key was
used to terminate the input, and a backward progression is provided. The
source codes for the screen input/edit routine CALLs and use of the
KEYZ variable are provided below:

90 SUB CAMINP(PNS,RNS,NXRC,DD$)

100 REM

110 KEYZ=0:COLOR 15,1:CLS

120 REM

130 CALL SITE(PN$,RN$,NXRC,KEYZ)

140 CALL GEOM(PN$,RN$,NXRC,KEYZ):IF KEYZ=1 THEN 130

150 CALL POLES(PN$,RN$,NXRC,KEYZ):IF KEYZ=1 THEN 140

160 CALL NETS(PN$,RN$,NXRC,KEYZ):IF KEYZ=1 Ti
t

EN 150

170 CALL CABLE(PN$,RN$,NXRC,KEYZ):IF KEYZ=1 THEN 160

180 CALL ANCHOR(PNS,RNS,NXRC,KEYZ):IF KEYZ-1 THEN 170

E-^h input/edit routine follows the same basic program logic. This
logic is outlined in Figure 2 below. The steps of the logic process for
each routine are as follows:

(1) Define the screen ihumber and read the screen field location and
field length data from the program data files,

(2) Check the project data file for existing project data related to
the current input/edit screen,

(3) If no project data exist, load default data; if project data exist,
load data from the project data file,

(4) Display the data and allow tor the modification of all data items,

(5) Check the data for consistency where possible, displaying
appropriate messages when inconsistencies are identified, and
ensure data are corrected before program operations are
continued, and

Chapter 5 CAMINP Routine 77

DEFINE SCREEN NO.
T

CALL GETLOC LOAD FIELD ADDRESSES
CALL GETFLD/ LOAD FIELD LENGTHS

NO X LOAD DEFAULT/

EXISINGAT\ DATA /

ýKC A LL DS K!RD/

ICALL SCRE DISPLAY
CALL DATA!DUMP SCREEN DATA

~<FI>

• KEYZ-I

<ESC>,E YZ -0

AR AT K YES XCALL DSKWRT/

WRITE IREC()

MESSAGE

Figure 2. Camouflage input/edit routine logic

78 Chapter 5 CAMINP Routine

(6) Write the data to the project data file and update the addressing
data both on the project data file and in memory.

General Site Description Routine. The first (NPR=I) input/edit routine
called is the SITE routine which provides for the description of the gen-
eral site conditions. These general site conditions include the soil charac-
teristics, climatic data, wind conditions, and ice and snow load conditions.
There are 11 data items (NAD(1)) associated with this screen. A descrip-
tion, data field locations, data field lengths, and default data of these data
items are provided in Table 3 below. The auxiliary screen routine,
SITESCRN, is used to provide the screen display for this routine.

Table 3

Input/Edit Data items for General Site Description Routine

Data item Field Location Field Length Default Data Description

1 636 10 400.0 Soil cohesion (psf)

2 739 10 120.0 Soil unit weight (pcf)

3 858 10 25.0 Angle int friction (deg)

4 965 10 12.0 Boring diameter (in)

5 1354 10 0.10 Avg daily rainfall (in)

6 1457 10 50.0 Avg daily temp (deg F)

7 1539 10 10.0 Wind speed (mph)

8 1650 10 Avg sustained wind

9 1744 10 Gust wind speed

10 1854 10 2.0 Ice/snow load (psf)

11 2154 25 Terrain description

At the conclusion of the input/edit process (<ESC> termination
keystroke), checks are made to ensure that values for the soil cohesion,
soil unit weight, and soil angle of internal friction were provided. The
soil cohesion must be specified in the range of 0-4000 psf,1 the soil unit
weight must be in the range of 20-150 pcf, and the angle of internal fric-
tion must be in the range of 0-50 degrees. If any of the three values are
specified out of these ranges, an appropriate message is displayed, and

A table of factors for converting non-SI units of measurement to SI units is presented

on page vii.

Chapter 5 CAMINP Routine 79

control is returned to the screen display. The data checks are made each
time the <ESC> termination keystroke is provided. The source codes for
the SITE routine are provided below:

340 SUB SITE(PN$,RN$,NXRC,KEYZ)

480 REM

490 REM NLOC=11 FOR SITE DATA SCREEN

500 NPR=1:NLOC-NAD(NPR):CALL GETLOC(NPR,DUM()

510 FOR I-1 TO NAD(NPR):LPTS(I)=DUM(I):NEXT I

520 CALL GETFLD(NPR,DUM()

530 FOR I-1 TO NAD(NPR):FLD(I)-DUM(I):NEXT I

540 REM

550 FREC=IREC(NPR):IF FREC>0 THEN 640

560 REM

570 REM INITIALIZE SCREEN VALUES WITH DEFAULT DATA

580 FOR I=1 TO NLOC:VAR$(I)=" ":NEXT I

590 VAR$(l)=" 400.":VAR$(2)=" 120.":VAR$(3)=" 25.0":VAR$(4)

-" 12.0"

600 VAR$(5)-" 0.10 ':VAR$(6)=" 50.0 ":VAR$(7)=" 10.0

610 VAR$(10)=" 2.0

620 GOTO 660

630 REM

640 CALL DSKRD(FREC,NDUM,DUM(),DUM$())

645 FOR I-1 TO NDUM:VAR$(I)-DUM$(I):NEXT I

650 REM

660 CALL SITESCRN(PN$,RN$)

665 IST=1:IEND=NLOC:CALL SCRNDUMP(IST,IEND)

670 LOCATE 24,2:PRINT "press <Esc> when input is complete

680 REM

690 REM *** INPUT NEW DATA or OVER-WRITE old data *

700 CALL GENINP(IST,IEND,LAST)

710 IF LAST-59 THEN KEYZ-1:GOTO 940

720 IF LAST<>27 THEN 660

730 REM

740 REM DATA CHECKS FOR SITE SPECIFIC DATA

750 REM SOIL COHESION

760 A$-VAR$(1):CALL SCAN(A$,Vo,NN,B$(),NW)

770 IF V(1)>0 AND V(1)<4000 THEN 840

780 B$(1)-" Invalid SOIL COHESION #####.## specified

- TRY AGAIN"

790 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 790

800 COLOR 31,1,1:LOCATE 24,2:PRINT USING B$(1);V(1);

810 A$-INKEY$:IF LEN(A$)-0 THEN 810

820 GOTO 660

830 REM SOIL UNIT WEIGHT

840 A$-VAR$(2):CALL SCAN(A$,V(,,NN,B$(),NW)

850 IF V(1)>20 AND V(1)<150 THEN 890

860 B$(1)-" Invalid SOIL UNIT WEIGHT #####.## specified

- TRY AGAIN"

870 GOTO 790

80 Chapter 5 CAMINP Routine

880 REM INTERNAL ANGLE OF FRICTION

890 A$=VAR$(3):CALL SCAN(A$,V(,NN,B$(),NW)

900 IF V(1)>0 AND V(I)<50 THEN 940

910 B$(1)=" Invalid SOIL ANGLE OF INTERNAL FRICTION ###.##

specified

920 GOTO 790

930 REM

940 FREC=IREC(NPR):IF FREC=0 THEN FREC=NXRC

950 CALL DSKWRT(FREC)

955 IF IREC(NPR)=0 THEN IREC(NPR)=NXRC:NXRC=FREC+1

960 A$=MKS$(NXRC):FOR I=l TO 31:A$=A$+MKS$(IREC(I)):NEXT I

970 LSET AA$=A$:PUT #1,1

980 REM

990 END SUB

Structure Geometry Routine. The second (NPR=2) input/edit routine
called is the GEOM which provides for the geometric description of the
camouflage structure to be analyzed. These structure geometry data in-
clude the total length of the structure, bay spacings along the length of the
structure, total width of the structure, minimum support spacing along the
width dimension, support member height, exterior support guy condition,
allowable sag in the tension members, and allowable displacement error
of the support members. There are 27 data items (NAD(2)) associated
with this screen. A description, data field locations, data field lengths,
and default data of these data items are provided in Table 4 below. The
auxiliary screen routine, GEOMSCRN, is used to provide the screen dis-
play for this routine.

Table 4
Input/Edit Data Items for Structure Geometry Routine

Field

Data Item Location Field Length Default Data Description

1 648 10 Structure length (ft)

2-20 (2) 927-1167 2 Number of bays

3-21 (2) 932-1172 4 Bay spacing (fit)

22 1447 10 Structure width (ft)

23 1549 10 10.0 Min support spacing (ft)

24 1962 10 20.0 Structure height (ft)

25 2048 2 Y Exterior support guyed

26 2150 10 2.0 Allowable sag (ft)

27 2260 10 0.10 Displacement error (in)

Chapter 5 CAMINP Routine 81

At the conclusion of the input/edit process (<ESC> termination
keystroke), checks are made to ensure that the data are consistent. The
structure length, structure width, minimum support spacing along the
width, support height, maximum sag in the tension members, and maxi-
mum displacement error for the support members must be specified. The
maximum displacement error must be at least 0.10 inches. The bay spac-
ings are summed and the total of the bay spacings compared to the struc-
ture length. If any of these checks yield a discrepancy in the data, an
appropriate message is displayed, and control is returned to the screen dis-
play. The data checks are made each time the <ESC> termination key-
stroke is provided. The source codes for the GEOM routine are provided
below:

1000 SUB GEOM(PN$,RN$,NXRC,KEYZ)

1120 REM

1130 REM NLOC=27 FOR GEOMETRY SCREEN

1140 KEYZ=0:NPR=2:NLOC=NAD(NPR) :CALL GETLOC(NPR,DUM()

1150 FOR I-i TO NAD(NPR):LPTS(I)-DUM(I):NEXT I

1160 CALL GETFLD(NPR,DUM()

1170 FOR 1=1 TO NAD(NPR):FLD(I)=DUM(I):NEXT I

1180 REM

1190 FREC-IREC(NPR):IF FREC>0 THEN 1260

1200 REM

1210 REM INITIALIZE SCREEN DATA ITEMS WITH DEFAULT DATA

1220 FOR I-1 TO NLOC:VAR$(I)=" ":NEXT I

1230 VAR$(23)-" 10.0 ":VAR$(24)=" 20.0 ":VAR$(25)="Y

":VAR$(26)=" 2.0 "

1240 VAR$(27)=" 0.10":GOTO 1280

1250 REM

1260 CALL DSKRD(FREC,NDUMDUMo,DUM$ ())

1265 FOR I-1 TO NDUM:VAR$(I)-DUM$(I):NEXT I

1270 REM

1280 CALL GEOMSCRN(PN$,RN$)

1285 IST-1:IEND=NLOC:CALL SCRNDUMP(ISTIEND)

1290 LOCATE 24,2

1295 PRINT "press <Esc> for next screen <Fl> for previous

screen";

1300 REM

1310 CALL GENINP(IST,IEND,LAST)

1320 IF LAST=59 THEN KEYZ=I:GOTO 1890

1330 IF LAST<>27 THEN 1280

1340 REM

1350 REM DATA CHECKS FOR CONSISTENCY OF GEOMETRY

1360 A$-VAR$(1):CALL SCAN(A$,Vo,NNB$(),NW):SLENG-V(1)

1370 IF SLENG>0 THEN 1450

1380 B$(1)-" Invalid Structure Length ####.### was specified

- TRY AGAIN"

1390 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 1390

1400 COLOR 31,1,1:LOCATE 24,2:PRINT USING B$(1);SLENG;

1410 A$-INKEY$:IF LEN(A$)-0 THEN 1410

82 Chapter 5 CAMINP Routine

1420 COLOR 15,1,1:GOTO 1280

1430 REM

1440 REM CHECK BAY SPACINGS

1450 SPAN=0!:NBAY=0:FOR IZ=2 TO 20 STEP 2

1460 A$=VAR$(IZ):CALL SCAN(A$,Vo,NN,B$(),NW):IF V(1)<=0 THEN 1490

1470 NBY-V(1):AS-VAR$(IZ+1):CALL SCAN(A$,V),NN,B$(),NW)

1480 SPAN-SPAN+NBY*V(1):NBAY-NBAY+NBY

1490 NEXT IZ

1500 IF ABS(SLENG-SPAN)<.01 THEN 1570

1510 B$(1)-" Sum of Bay Spacings ####.### <> Structure

Length ####.###"

1520 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 1520

1530 COLOR 31,1,1:LOCATE 24,2:PRINT USING B$(1);SPAN,SLENG;

1540 GOTO 1410

1550 REM

1560 REM CHFCK STRUCTURE WIDTH

1570 A$-VAR$(22):CALL SCAN(A$,Vo,NN,B$(),NW):IF V(1)>0 THEN 1620

1580 B$(1)=" Invalid Structure Width ####.### was specified

- TRY AGAIN"

1590 SLENG-V(1):GOTO 1390

1600 REM

1610 REM CHECK MIN POLE SPACING

1620 A$-VAR$(23):CALL SCAN(A$,Vo,NN,B$(),NW):IF V(1)>0 THEN 1640

1625 B$(1)=" Invalid Min Pole Spacing ####.### was specified

- TRY AGAIN"

1630 MINSPC=V(1) :SLENG=MINSPC:GOTO 1390

1635 REM CHECK NUMBER SUPPORT MEMBERS REQUIRED (MAX OF 64)

1640 NWIDE-INT(WIDE/MINSPC)+1:NPOLE=NWIDE*(NBAY+I)

1645 IF NPOLE<=64 THEN 1670

1650 B$(1)-" Min Pole Spacing will exceed Max Supports Allowed

(64) ###"

1655 SLENG=NPOLE:GOTO 1390

1660 REM

1665 REM CHECK EXT POLE HEIGHT

1670 A$-VAR$(24):CALL SCAN(A$,Vo,NN,B$(),NW):IF V(1)>0 THEN 1720

1680 B$(1)=" Invalid Ext Pole Height ####.### was specified

- TRY AGAIN"

1690 SLENG=V(1):GOTO 1390

1700 REM

1710 REM CHECK EXT POLE GUY SPECIFICATION (Y/N)

1720 A$-VAR$(25):IF MID$(A$,1,1)="Y" OR MID$(A$,1,1)-"y" THEO 1800

1730 IF MID$(A$,1,1)-"N" OR MID$(A$,1,1)="n" THEN 1800

1740 B$(1)-" Invalid Ext Pole Guy \\ was specified

- TRY AGAIN"

1750 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 1750

1760 COLOR 31,1,1:LOCATE 24,2:PRINT USING B$(1);A$;

1770 GOTO 1410

1780 REM

1790 REM CHECK MAX SAG ALLOWED IN CABLES

1800 A$-VAR$(26):CALL SCAN(A$,V(,NN,B$(),NW):IF V(1)>O THEN 1850

Chapter 5 CAMINP Routine 83

1810 B$(1)=" Invalid Maximum Cable Sag ####.### was specified

- TRY AGAIN"

1820 SLENG=V(1):GOTO 1390

1830 REM

1840 REM CHECK MAX ALLOW DISPLACE ERROR (MUST BE > THAN 0.10 IN)

1850 A$-VAR$(27):CALL SCAN(A$,Vo,NN,B$(),NW):IF V(1)>-.1

THEN 1890

1860 B$(1)=" Allowable Displacement Error ##.#### must be

> 0.10 inches "

1870 SLENG-V(1):GOTO 1390

186u hEM

1890 FREC=IREC(NPR):IF FREC=O THEN FREC=NXRC

1900 CALL DSKWRT(FREC)

1905 IF IREC(NPR)=0 THEN IREC(NPR)=NXRC:NXRC=FREC+l

1910 A$=MKS$(NXRC):FOR I=l TO 31:A$=A$+MKS$(IREC(I)):NEXT I

1920 LSET AA$=A$:PUT #1,1

1940 REM

1950 END SUB

Support Member Characteristics Routine. The third and fourth
(NPR=3 and 4) input/edit screens displayed are provided from the POLES
routine, which provides for the material characteristics of the support
member for the structure. Up to 30 support members may be included on
these two screens of input, but only one may be selected for each program
execution. The support member characteristics include the use indicator,
six-character name of the member, member length, allowable strength,
modulus of elasticity, cross-sectional area, moment of inertia, unit price,
and a 15-character description. There are 9 data items (NAD(3) and
NAD(4)) associated with each support member, and each screen may con-
tain a maximum of 15 support members. A total of 135 data items can be
provided on each of the two screens provided for the support member
data. A description, data field locations, data field lengths, and default
data of the nine data items for a single support member are provided in
Table 5 below. The data for the other 14 support members contained on
the screen will be identical to those data in Table 5 except that the field
location will be increased by 100 for each additional support member dis-
played (1002, 1004, 1011, 1020, 1029, 1038, 1047, 1056, and 1065 for the
second; 1102, etc., for the third and so on). The auxiliary screen routine,
POLSCRN, is used to provide the screen display for this routine.

The initial default data for each support member are provided from the
program pricing data (Chapter 4 Pricing Data). During the input program
function, the pricing data file is opened, and up to 30 support members are
extracted and stored in the POLNAME$() array. These pricing data items
are marked with a P use code. If the pricing data file is empty, or if no
data items are found with a P use code, the initial display of the screen
will be empty. In this case, the user will have to provide each of the nine
data characteristics for the support member to be used. If the desired
support member is not displayed, the user may add the support member at
the end of the display and provide each of the nine data characteristics for

84 Chapter 5 CAMINP Routine

Table 5
InpuVEdit Data Items for Support Member Characteristics
Routine

Data Item Field Location Field Length Default Data Description

1 902 1 N Use indicator (Y/N)

2 904 6 Name of member

3 911 8 Length of member (ft)

4 920 8 Allowable strength (ksi)

5 929 8 Modulus of elasticity

6 938 8 Cross-section area

7 947 8 Moment of inertia

8 956 8 Unit price ($/ea)

9 965 15 Description

that member. During subsequent edit program functions, the same
material data will be extracted from the project data file, and no additional
searching of the pricing data file will be attempted. At the conclusion of
the input/edit process (<ESC> termination keystroke), each data item for
the support member selected will be checked to ensure that a nonzero
value has been provided. The final data check ensures that only one sup-
port member was selected. If any of these checks indicate an inconsistent
data set, an appropriate message is displayed, and control is returned to
the screen display. The data checks are made each time the <ESC> ter-
mination keystroke is provided. The source codes for the POLES routine
are provided below:

1960 SUB POLES(PNS,RNS,NXRC,KEYZ)

1970 REM

2100 DIM POLNAME$(30)

2110 NPOL=0:NS=BEGAD(27):IF NS=0 THEN 2170

2120 NE-BEGAD(28)-l

2130 FOR I=NS TO NE:GET #5,1+79

2140 NPOL=NPOL+1:POLNAME$(NPOL)=PRD$(1)

2150 NEXT I

2160 REM

2170 KEYZO:NPR-3:NYES=0

2180 CALL GETLOC(NPR,DUMo) :NLOC=NAD(NPR)*15

2190 FOR I=1 TO NAD(NPR):LPTS(I)=DUM(I):NEXT I

2200 CALL GETFLD(NPR,DUMo)

2205 FOR I-I TO NAD(NPR):FLD(I)=DUM(I):NEXT I

2210 FOR 1-2 TO 15:IJ=(I-1)*NAD(NPR):FOR J=1 TO NAD(NPR)

2220 LPTS(IJ+J)=LPTS(J)+100*(I-l) :DUM(IJ+J)=DUM(J) :FLD(IJ+J)

-DUM (J)

Chapter 5 CAMINP Routine 85

2230 NEXT J:NEXT I

2240 REM

2250 FREC-IREC(NPR):IF FREC>O THEN 2400

2260 REM

2270 NSTRT-l:IF NPR=4 THEN NSTRT=16

2280 NEND=NSTRT+14

2290 FOR I=NSTRT TO NEND:IJ=(I-NSTRT)*NAD(NPR)

2300 FOR J=1 TO NAD(NPR):VAR$(IJ+J)=" ":NEXT J

2310 IF I>NPOL THEN 2380

2320 VAR$(IJ+l)="N.

2330 VARS(IJ+2)-POLNAMES (I) :CALL LOOKPRIC(POLNAMES (I) ,PRSTS)

2340 VARS(IJ+3)-STR$(CVS(pRD$(3))):VAR$(IJ+4)=STRS(CVS(PRD$(5)))

2350 VARS(IJ+5)-STR$(CVS(PRDS(l0))):VAR$(IJ+6)=STR$(CVS(PRD$(l1)))

2360 VAR$(IJT+7)-STRS(CVS(PRDS(12))):VARS(IJ+8)-STR$(CVS(PRD$(15)))

2370 VAR$(IJ+9)=MID$(PRD$(9),1,15)

2380 NEXT I:GOTO 2420

2390 REM

2400 CALL DSKRD(FREC,NDUM,DUMo,DUMSO))

2405 FOR 1=1 TO NDUM:VAR$(I)-DUM$(I):NEXT I

2410 REM

2420 CALL POLSCRN(PN$,RN4S)

2425 IST-l:IEND-NLOC:CALL SCRNDUMP (1ST, lEND)

2430 LOCATE 24,2

2435 PRINT "press <Esc> for next screen <Fl> for previous

screen";

2440 REM

2450 CALL GENINP(IST,IEND,LAST)

2460 IF LAST=59 THEN KEYZ=l:GOTO 2690

2470 REM

2480 REM CHECK FOR ONLY ONE SPECIFIED MATERIAL HERE

2490 FOR I=l TO l5:IJ=(I-l)*NAD(NPR)

2500 IF VARS(IJ+l)="Y" OR VAR$(IJ+l)="y" THEN

2510 REM

2520 REM INSURE THAT ALL DATA ITEMS ARE SPECIFIED

2530 FOR JZ=3 TO 8:AS=VAR$(IJ+JZ):CALL SCAN(AS,Vo,NN,

BS () ,NW)

2540 IF V(l)>0 THEN 2590

2550 BS(1)=" SUPPORT MEMBER ##: All data items must

be specified"

2560 IF LEN(B$(lfl<78 THEN B$(l)=B$(J)+" ":GOTO 2560

2570 COLOR 31,1,1:LOCATE 24,2:PRINT USING B$(1l)I;

2580 GOTO 2660

2590 NEXT JZ:NYES=NYES+l

2600 ENDIF

2610 NEXT I:IF NPR=3 THEN 2690

2620 17 NYES-l THEN 2690

2630 BS(1)=" Only one (1) POLE material should be selected

2640 IF LEN(BS(1))<78 THEN BS(l)=BS(l)+" ":GOTO 2640

2650 COLOR 31,1,1:LOCATE 24,2:PRINT BS(1);

2660 AS=INKEYS:IF LEN(A$)=0 THEN 2660

86 Chapter 5 CAMINP Routine

2670 COLOR 15,1,1:GOTO 2420

2680 REM

2690 FREC-IREC(NPR):IF FREC=0 THEN FREC=NXRC

2700 CALL DSKWRT(FREC)

2705 IF IREC(NPR)-0 THEN IREC(NPR)=NXRC:NXRC=FREC+1

2710 A$-MKS$(NXRC):FOR I-1 TO 31:A$=A$+MKS$(IREC(I)):NEXT 1

2720 LSET AA$=A$:PUT #1,1

2730 IF LAST=59 THEN 2750

2740 IF NPR=3 THEN NPR=NPR+1:GOTO 2180

2750 END SUB

Netting Characteristics Routine. The fifth and sixth (NPR=5 and 6)
input/edit screens displayed are provided from the NETS routine, which
provides for the material characteristics of the netting for the structure.
Up to 30 netting types may be included on these two screens of input, but
only one may be selected for each program execution. The netting charac-
teristics include the use indicator, six-character name of the net, unit size
of each netting piece, thickness, allowable strength, unit weight, drag coef-
ficient, unit price, and a 15-character description. Nine data items
(NAD(5) and NAD(6)) are associated with each netting type, and each
screen may contain a maximum of 15 netting types. A total of 135 data
items can be provided on each of the two screens provided for the netting
data. A description, data field locations, data field lengths, and default
data of the nine data items for a single netting type are provided in Table 6
below. The data for the other 14 netting types contained on the screen
will be identical to those data in Table 6 except that the field location will
be increased by 100 for each additional netting type displayed. The
auxiliary screen routine, NETSCRN, is used to provide the screen display
for this routine.

The initial default data for each netting type are provided from the pro-
gram pricing data (Chapter 4 Pricing Data). During the input program
function, the pricing data file is opened, and up to 30 netting types are ex-
tracted and stored in the NETNAME$() array. These pricing data items
are marked with an N use code. If the pricing data file is empty, or if no
data items are found with an N use code, the initial display of the screen
will be empty. In this case, the user will have to provide each of the nine
data characteristics for the netting type to be used. If the desired netting
type is not displayed, the user may add the netting type at the end of the
display and provide each of the nine data characteristics for that type.
During subsequent edit program functions, the same material data will be
extracted from the project data file, and no additional searching of the
pricing data file will be attempted. At the conclusion of the input/edit
process (<ESC> termination keystroke), each data item for the netting
type selected will be checked to ensure that a nonzero value has been
provided. The final data check ensures that only one netting type was
selected. If any of these checks indicate an inconsistent data set, an
appropriate message is displayed, and control is returned to the screen dis-
play. The data checks are made each time the <ESC> termination

Chapter 5 CAMINP Routine 87

Table 6

Input/Edit Data Items for Netting Characteristics Routine

Data Item Field Location Field Length Default Data Description

1 902 1 N Use indicator (Y/N)

2 904 6 Name of netting type

3 911 8 Unit size (sq ft)

4 920 8 Net thickness (in)

5 929 8 Allowable strength

6 938 8 Unit weight (lbs/sq ft)

7 947 8 Drag coefficient

8 956 8 Unit price ($/sq ft)

9 965 15 Description

keystroke is provided. The source codes for the NETS routine are
provided below:

2760 SUB NETS(PN$,RNS,NXRC,KEYZ)

2770 REM

2900 DIM NETNAME$(30)

2910 NNET=0:NS=BEGAD(25):IF NS=0 THEN 2960

2920 NE=BEGAD(26)-I

2930 FOR I=NS TO NE:GET #5,1+79

2940 NNET-NNET+I:NETNAME$(NNET)=PRD$(1)

2950 NEXT I

2960 KEYZ-0:NPR-5:NYES=0

2970 CALL GETLOC(NPR,DUM()) :NLOC=NAD(NPR)*15

2980 FOR I=1 TO NAD(NPR):LPTS(I)=DUM(I):NEXT I

2990 CALL GETFLD(NPR,DUMo)

2995 FOR I=1 TO NAD(NPR):FLD(I)=DUM(I):NEXT I

3000 FOR I=2 TO 15:IJ=(I-1)*NAD(NPR):FOR J=1 TO NAD(NPR)

3010 LPTS(IJ+J)=LPTS(J)+100*(I-1):DUM(I.T+J)=DUM(J):FLD(IJ+J)

=DUM (J)

3020 NEXT J:NEXT I

3030 REM

3040 FREC=IREC(NPR):IF FREC>0 THEN 3190

3050 REM

3060 NSTRT=1:IF NPR=6 THEN NSTRT=16

3070 NEND-NSTRT+14

3080 FOR I=NSTRT TO NEND:IJ=(I-NSTRT)*NAD(NPR)

3090 FOR J=1 TO NAD(NPR):VAR$(IJ+J)=" ":NEXT J

3100 IF I>NNET THEN 3170

88 Chapter 5 CAMINP Routine

3110 VARS(IJ+1)="N"

3120 VAR$(IJ+2)=NETNAME$(I) :CALL LOOKP~lC(NETNAMES(I),PRSTS)

3130 VARS(IJ+3)=STRS(CVS(PRDS(3))):VARS(IJ+4)=STR$(CVS(PRD$(l1)))

3140 VAR$(IJ+5)-STRS(CVS(PRD$(5))):VARS(IJ+6)=STRS(CVS(PRD$(7)))

3150 VARS(IJ+7)=STRS(CVS(PRD$(17))):VAR$(IJ+8)=STR$(CVS(PRDS(15)))

3160 VAR$ (IJ+9)=MID$ (PRDS (9),*1,15)

3170 NEXT I:GOTO 3210

3180 REM

3190 CALL DSKRD(FREC,NDUM,DUMo,DUMSO))

3195 FOR 1=1 TO NDUM:VAR$(I)-DUM$(I):NEXT I

3200 REM

3210 CALL NETSCRN(PN$,RN$)

3215 IST=1:IEND-NLOC:CALL SCRNDUMP(IST,IEND)

3220 LOCATE 24,2

322E PRINT "press <Esc> for next screen <Fl> for previous

screen";

3230 REM

3240 CALL GENINP(IST,IEND,LAST)

3250 IF LAST=59 THEN KEYZ=1:GOTO 3480

3260 REM

3270 REM CHECK FOR ONLY ONE MATERIAL SPECIFIED

3280 FOR I=1 TO 15:IJ=(I-1)*NAD(NPR)

3290 IF VARS(IJ+1)=Y" OR VAR$(IJ+1)="y" THEN

3300 REM

3310 REM INSURE THAT ALL DATA ITEMS ARE SPECIFIED

3320 FOR JZ-3 TO 8:A$=VAR$(IJ+JZ):CALL SCAN(A$,VO),

3330 IF V(1)>0 THEN 3380

3340 B$(1)=" NETTING MATERIAL ##: All data items must

be specified"

3350 IF LEN(BS(1))<78 THEN BS(l)=B$(1)+" ":GOTO 3350

3360 COLOR 31,1,1:LOCATE 24,2:PRINT USING B$(1);I;

3370 GOTO 3450

3380 NEXT JZ:NYES=NYES+l

3390 ENDIF

3400 NEXT I:IF NPR=5 THEN 3480

3410 IF NYES=1 THEN 3480

3420 B$(1)=" Only one (1) NETTING material should be selected

3430 IF LEN(BS(1))<78 THEN B$(1)=B$(1)+' ":GOTO 3430

3440 COLOR 31,1,1:LOCATE 24,2:PRINT BS(1);

3450 AS=INKEY$:IF LEN(AS)=0 THEN 3450

3460 COLOR 15,1,1:GOTO 3210

3470 REM

3480 FREC=IREC(NPR):IF FREC=0 THEN FREC=NXRC

3490 CALL DSKWRT(FREC)

3495 IF IREC(NPR)=0 THEN IREC(NPR)=NXRC:NXRC=FREC+1

3500 AS=MKS$(NXRC) :FOR I=l TO 31:A$=A$+MKSS(IREC(I)) :NEXT 1

3510 LSET AA$=A$:PUT #1,1

3520 IF LAST=59 THEN 3540

3530 IF NPR=5 THEN NPR=NPR+1:GOTO 2970

Chapter 5 CAMINP Routine 89

3540 END SUB

Tension Member Characteristics Routine. The seventh and eighth
(NPR=7 and 8) input/edit screens displayed are provided from the
CABLES routine, which provides for the material characteristics of the
tension member for the structure. Up to 30 tension members may be in-
cluded on these two screens of input, but only one may be selected for
each program execution. The tension member characteristics include the
use indicator, six-character name of the member, allowable strength,
modulus of elasticity, coefficient of thermal expansion, cross-sectional
area, unit weight, unit price, and a 15-character description. Nine data
items (NAD(7) and NAD(8)) are associated with each tension member,
and each screen may contain a maximum of 15 tension members. A total
of 135 data items can be provided on each of the two screens provided for
the tension member data. A description, data field locations, data field
lengths, and default data of the nine data items for a single tension mem-
ber are provided in Table 7 below. The data for the other 14 tension mem-
bers contained on the screen will be identical to those data in Table 7
except that the field location will be increased by 100 for each additional
tension member displayed. The auxiliary screen routine, TENSCRN, is
used to provide the screen display for this routine.

The initial default data for each tension member are provided from the
program pricing data (Chapter 4 Pricing Data). During the input program
function, the pricing data file is opened, and up to 30 tension members are
extracted and stored in the TENNAME$() array. These pricing data items

Table 7
Input/Edit Data Items for Tension Member Characteristics
Routine

Data Item Field Location Field Length Default Data Description

1 902 1 N Use indicator (Y/N)

2 904 6 Name of member

3 911 8 Allowable strength

4 920 8 Modulus of elasticity

5 929 8 Coef of thermal expans

6 938 8 Cross-section area

7 947 8 Unit weight (lbs/ft)

8 956 8 Unit price ($/ft)

9 965 15 Description

90 Chapter 5 CAMINP Routine

are marked with a C use code. If the pricing data file is empty, or if no
data items are found with a C use code, the initial display of the screen
will be empty. In this case. the user will have to provide each of the nine
data characteristics for the tension member to be used. If the desired ten-
sion member is not displayed, the user may add the tension member at the
end of the display and provide each of the nine data characteristics for
that member. During subsequent edit program functions, the same
material data will be extracted from the project data file, and no additional
searching of the pricing data file will be attempted. At the conclusion of
the input/edit process (<ESC> termination keystroke), each data item for
the tension member selected will be checked to ensure that a nonzero
value has been provided. The final data check ensures that only one ten-
sion member was selected. If any of these checks indicate an inconsistent
data set, an appropriate message is displayed, and control is returned to
the screen display. The data checks are made each time the <ESC> ter-
mination keystroke is provided. The source codes for the CABLE routine
are provided below:

3550 SUB CABLE(PN$,RN$,NXRC,KEYZ)

3560 REM

3690 DIM TENNAME$(30)

3700 NTEN=0:NS=BEGAD(14):IF NS=0 THEN 3750

3710 NE-BEGAD(15)-1

3720 FOR I-NS TO NE:GET #5,1+79

3730 NTEN-NTEN+1:TENNAME$ (NTEN)=iRD$ (1)

3740 NEXT I

3750 KEYZ=0:NPR=7:NYES=0

3760 CALL GETLOC(NPR,DUM() :NLOC=NAD(NPR)*15

3770 FOR I-1 TO NAD(NPR):LPTS(I)=DUM(I):NEXT I

3780 CALL GETFLD(NPR,DUMo)

3785 FOR I-1 TO NAD(NPR):FLD(I)=DUM(I):NEXT I

3790 FOR 12 TO 15:IJ=(I-1)*NAD(NPR):FOR J=1 TO NAD(NPR)

3800 LPTS(IJ+J)=LPTS(J)+100*(I-1) :DUM(IJ+J)=DUM(J) :FLD(IJ+J)

-DUM (J)

3810 NEXT J:NEXT I

3820 REM

3830 FREC=IREC(NPR):IF FREC>0 THEN 3980

3840 REM

3850 NSTRT-1:IF NPR-8 THEN NSTRT-16

3860 NEND-NSTRT+14

3870 FOR I-NSTRT TO NEND:IJ=(I-NSTRT)*NAD(NPR)

3880 FOR J-1 TO NAD(NPR):VAR$(IJ+J)-" ":NEXT J

3890 IF I>NTEN THEN 3960

3900 VAR$(IJ+1)="N"

3910 VAR$(IJ+2)=TENNAME$(I) :CALL LOOKPRIC(TENNAME$(I),PRST$)

3920 VAR$(IJ+3)-STR$(CVS(PRD$(5))):VAR$(IJ+4)=STR$(CVS(PRD$(10)))

3930 VAR$(IJ+5)-STR$(CVS(PRD$(13))):VAR$(IJ+6)-STR$(CVS(PRD$(11)))

3940 VAR$(IJ+7)-STR$(CVS(PRD$(7))):VAR$(IJ+8)=STR$(CVS(PRD$(15)))

3950 VAR$(IJ+9)-MID$(PRD$(9),1,15)

3960 NEXT I:GOTO 4000

Chapter 5 CAMINP Routine 91

3970 REM

3980 CALL DSKRD(FREC,NDUM,DUMo,DUM$())

3985 FOR I=1 TO NDUM:VAR$(I)=DUM$(I):NEXT I

3990 REM

4000 CALL TENSCRN(PN$,RN$)

4005 IST=1:IEND=NLOC:CALL SCRNDUMP(IST, IEND)

4010 LOCATE 24,2

4015 PRINT "press <Esc> for next screen <Fl> for previous

screen";

4020 REM

4030 CALL GENINP(IST,IEND,LAST)

4040 IF LAST=59 THEN KEYZ=1:GOTO 4270

4050 REM

4060 REM CHECK FOR ONLY ONE MATERIAL SPECIFIED

4070 FOR I-1 TO 15:IJ=(I-l)*NAD(NPR)

4080 IF 1'A•$(IJ+1)="Y" OR VAR$(IJ+1)="y" THEN

4090 REM

4100 REM INSURE THAT ALL DATA ITEMS ARE SPECIFIED

4110 FOR JZ=3 TO 8:A$=VAR$(IJ+JZ):CALL SCAN(A$,Vo,NN,

B$(),NW)

4120 IF V(1)>0 THEN 4170

4130 B$(1)=" TENSION MEMBER ##: All data items must

be specified"

4140 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+' .. :GOTO 4140

4150 COLOR 31,1,1:LOCATE 24,2:PRINT USING B$(1);I;

4160 GOTO 4240

4170 NEXT JZ:NYES=NYES+1

4180 ENDIF

4190 NEXT I:IF NPR=7 THEN 4270

4200 IF NYES=1 THEN 4270

4210 B$(1)=" Only one (1) TENSION MEMBER material should

be selected "

4220 IF LEN(B$(1))<78 THEN B$(1)=B$(l)+" ":GOTO 4220

4230 COLOR 31,1,1:LOCATE 24,2:PRINT B$(l);

4240 A$=INKEY$:IF LEN(A$)=0 THEN 4240

4250 COLOR 15,1,1:GOTO 4000

4260 REM

4270 FREC=IREC(NPR):IF FREC=O THEN FREC=NXRC

4280 CALL DSKWRT(FREC)

4285 IF IREC(NPR)=0 THEN IREC(NPR)=NXRC:NXRC=FREC+1

4290 A$-MKS$(NXRC):FOR I-1 TO 31:A$=A$+MKS$(IREC(I)):NEXT I

4300 LSET AA$-A$:PUT #1,1

4310 IF LAST=59 THEN 4330

4320 IF NPR-7 THEN NPR-NPR+1:GOTO 3760

4330 END SUB

Anchor Characteristics Routine. The ninth and tenth (NPR=9 and 10)
input/edit screens displayed are provided from the ANCHOR routine,
which provides for the material characte,,.idcs of the anchors for the
guyed ,uucture. Up to 30 anchors may be included on these two screens

92 Chapter 5 CAMINP Routine

of input, but only five may be selected for each program execution. The
critical data for these five anchors are stored in the labeled COMMON
block ANCHORS. The anchor characteristics include the use indicator,
six-character name of the anchor, rod length, allowable strength, modulus
of elasticity, rod diameter, helix diameter, unit price, and a 15-character
description. Nine data items (NAD(9) and NAD(10)) are associated with
each anchor, and each screen may contain a maximum of 15 anchors. A
total of 135 data items can be provided on each of the two screens pro-
vided for the anchor data. A description, data field locations, data field
lengths, and default data of the nine data items for a single anchor are
provided in Table 8 below. The data for the other 14 anchors contained on
the screen will be identical to those data in Table 8 except that the field
location will be increased by 100 for each additional anchor displayed.
The auxiliary screen routine, ANCSCRN, is used to provide the screen dis-
play for this routine.

The initial default data for each anchor are provided from the program
pricing data (Chapter 4 Pricing Data). During the input program function,
the pricing data file is opened, and up to 30 anchors are extracted and
stored in the ANCNAME$() array. These pricing data items are marked
with an A use code. If the pricing data file is empty, or if no data items
are found with an A use code, the initial display of the screen will be
empty. In this case, the user will have to provide each of the nine data
characteristics for the anchor to be used. If the desired anchor is not dis-
played, the user may add the anchor at the end of the display and provide
each of the nine data characteristics for that anchor. During subsequent
edit program functions, the same material data will be extracted from the
project data file, and no additional searching of the pricing data file will

Table 8

Input/Edit Data Items for anchor Characteristics Routine

Data Item Field Location Field length Default Data Description

1 902 1 N Use indicator (Y/N)

2 904 6 Name of anchor

3 911 8 Rod length (in)

4 920 8 Allowable strength (ksi)

5 929 8 Modulus of elasticity

6 938 8 Rod diameter (in)

7 947 8 Helix diamc*,2r (in)

8 956 8 Unit price ($/ea)

9 965 i o-°ttiin

Chapter 5 CAMINP Routine 93

be attempted. At the conclusion of the input/edit process (<ESC> termina-
tion keystroke), each data item for the anchors selected will be checked to
ensure that a nonzero value has been provided. The final data check en-
sures that no more than five anchors were selected. If any of these checks
indicate an inconsistent data set, an appropriate message is displayed, and
control is returned to the screen display. The data checks are made each
time the <ESC> termination keystroke is provided. The source codes for
the ANCHOR routine are provided below:

4340 SUB ANCHOR(PN$,RN$,NXRC,KEYZ)

4350 REM

4480 DIM ANCNAME$(30)

4490 NANC=0:NS=BEGAD(12):IF NS=0 THEN 4540

4500 NE=BEGAD(13)-I

4510 FOR I=NS TO NE:GET #5,1+79

4520 NANC=NANC+1:ANCNAME$(NANC)=PRD$(1)

4530 NEXT I

4540 KEYZ=0:NPR=9:NYES=0

4550 CALL GETLOC(NPR,ODUH()):NLOC=NAD(NPR)*15

4560 FOR I=1 TO NAD(NPR):LPTS(I)=DUM(I):NEXT I

4570 CALL GETFLD(NPR,DUM())

4575 FOR I=1 TO NAD(NPR):FLD(I)=DUM(I):NEXT I

4580 FOR I=2 TO 15:IJ=(I-1)*NAD(NPR):FOR J=1 TO NAD(NPR)

4590 LPTS(IJ+J)=LPTS(J)+100*(I-1) :DUM(IJ+J)=DUM(J):FLD(IJ+J)

-DUM(J)

4600 NEXT J:NEXT I

4610 REM

4620 FREC=IREC(NPR):IF FREC>0 THEN 4770

4630 REM

4640 NSTRT=1:IF NPR=10 THEN NSTRT=16

4650 NEND=NSTRT+14

4660 FOR I=NSTRT TO NEND:IJ=(I-NSTRT)*NAD(NPR)

4670 FOR J=1 TO NAD(NPR):VAR$(IJ+J)=" ":NEXT J

4680 IF I>NANC THEN 4750

4690 VAR$(IJ+1)="N"

4700 VAR$(IJ+2)=ANCNAME$(I):CALL LOOKPRIC(ANCNAME$(I),PRST$)

4710 VAR$(IJ+3)=STR$(CVS(PRD$(3))):VAR$(IJ+4)=STR$(CVS(PRD$(5)))

4720 VAR$(IJ+5)=STR$(CVS(PRD$(10))):VAR$(IJ+6)=STR$(CVS(PRD$(11)))

4730 VAR$(IJ+7)=STR$(CVS(PRD$(14))):VAR$(IJ+B)=STR$(CVS(PRD$(15)))

4740 VAR$(IJ+9)=MID$(PRD$(9),1,15)

4750 NEXT I:GOTO 4790

4760 REM

4770 CALL DSKRD(FREC,NDUM,DUMo,DUM$())

4775 FOR 1-1 TO NDUM:VAR$(I)=DUM$(I):NEXT I

4780 REM

4790 CALL AN iCRN;(rN$, RN$)

4795 IST=1:IEND=NLOC:CALL SCRNDUMP(IST, IEND)

4800 LOCATE 24,2

94 Chapter 5 CAMINP Routine

4805 PRINT "press <Esc> for next screen <Fl> for previous

screen";

4810 REM

4820 CALL GENINP(IST,IEND,LAST)

4830 IF LAST=59 THEN KEYZ=1:GOTO 5100

4840 REM

4850 REM CHECK FOR UP TO FIVE ANCHORS SPECIFIED

4860 FOR I=1 TO 15:IJ=(I-1)*NAD(NPR)

4870 IF VAR$(IJ+l)="Y" OR VAR$(IJ+I)="y" THEN

4880 REM

4890 REM INSURE THAT ALL DATA ITEMS ARE SPECIFIED

4900 FOR JZ=3 TO 8:AS=VAR$(IJ+JZ):CALL SCAN(AS,Vo,NN,

B$ () ,NW)

4910 IF V(1)>0 THEN 4960

4920 B$(1)=" ANCHOR ##: All data items musL be specified"

4930 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 4930

4940 COLOR 31,1,1:LOCATE 24,2:PRINT USING B$(1);I;

4950 GOTO 5030

4960 NEXT JZ:NYES=NYES+l

4970 ENDIF

4980 NEXT I:IF NPR=9 THEN 5110

4990 IF NYES>0 THEN 5060

5000 B$(1)=" At least one (1) ANCHOR material must be selected

5010 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 5010

5020 COLOR 31,1,1:LOCATE 24,2:PRINT B$(1);

5030 A$=INKEY$:IF LEN(A$)=0 THEN 5030

5040 COLOR 15,1,1:GOTO 4790

5050 REM

5060 IF NYES<6 THEN 5110

5070 B$(1)=" No more than five (5) ANCHOR materials may

be selected

5080 IF LEN(B$(1))<78 THEN B$(l)=B$(1)+" ":GOTO 5080

5090 GOTO 5020

5100 REM

5110 FREC=IREC(NPR):IF FREC=0 THEN FREC=NXRC

5120 CALL DSKWRT(FREC)

5125 IF IREC(NPR)=0 THEN IREC(NPR)=NXRC:NXRC=FREC+l

5130 A$=MKS$(NXRC):FOR 1=1 TO 31:A$-A$+MKS$(IREC(I)):NEXT I

5140 LSET AA$=A$:PUT #1,1

5150 IF LAST=59 THEN 5170

5160 IF NPR=9 THEN NPR=NPR+1:GOTO 4550

5170 END SUB

Close Program Data Files. At the conclusion of the input/edit pro-
gram functions when program control has been returncd from the
ANCHOR routine, the CAMINP routine then closes the two data files
used to extract the field location data and field length data. The two data
files were OPENed as device numbers 2 and 3, respectively, so the
CLOSE function is called for each device. The source code is provided
below:

Chapter 5 CAMINP Routine 95

190 CLOSE #2:CLOSE #3

Copy Project Data to Floppy Disk. The final phase of CAMINP
routine operations involves the transfer of the project data file from the
designated disk drive (DD$) to the floppy disk drive and the erasure of the
project data file from the designated disk drive. These functions are per-
formed to ensure that the project data are retained on an external storage
medium and to avoid the designated disk drive (hard disk possibly) from
becoming cluttered with project data files. The project data file records
are copied one record at a time to ensure that the data are transferred cor-
rectly. When this routine function is completed, the project data file on
the designated disk drive is erased (KILLed), and control is returned to
the Camouflage Program main routine. The source codes for the final
routine function are provided below:

200 REM

210 REM COPY CONTENTS OF DAT FILE TO FLOPPY BEFORE RETURNING

220 REM COPY, CLOSE AND RETURN

230 FL$="P"+MID$(PN$,1,6)+MID$(RN$,1,i)+".DAT"

240 B$(1)=STR$(NXRC-1)+" Records Copied to A:"+FL$

250 IF LEN(B$(1))<78 THEN B$(1)=B$(1)+" ":GOTO 250

260 COLOR 31,1,1:LOCATE 24,2:PRINT B$(l);

270 OPEN "A:"+FL$ AS #2 LEN=128:FIELD #2, 128 AS BA$

280 GET #1,l:NXRC=CVS(MID$(AA$,1,4))

290 LSET BA$=AA$:PUT #2,1

300 FOR I=2 TO NXRC-I:GET #1,I:LSET BA$=AA$:PUT #2,I:NEXT I

310 COLOR 15,1,1:CLOSE:KILL FL$

320 REM

330 END SUB

Each of the input/edit routines called by the CAMINP routine CALL a
second routine to display the contents of each screen. These screen
routines are referenced by name in the descriptive text above, and the
source codes for each screen routine are provided below. These screen
routines are stored in a program module CAMOSCRN and are linked to
the CAMINP routine.

10 REM CAMOUFLAGE SYSTEM INPUT SCREENS CAMOSCRN.BAS

20 REM LATEST REVISIONS 01/16/91

30 REM

40 SUB SITESCRN(ESN$,RV$)

50 CLS

60 LOCATE 1,27:PRINT "FIXED FACILITY SUPPORT SYSTEMS"

65 LOCATE 1,62:PRINT "PROJECT # ";:PRINT USING "\ \";ESN$;

70 LOCATE 2,33:PRINT "Site Specific Data"

75 LOCATE 2,61:PRINT "REVISION # ";:PRINT USING "\\";RV$

80 LOCATE 4,10:PRINT "SOILS INVESTIGATION and FOUNDATION DATA"

90 LOCATE 6,20:PRINT "cohesion (psf):"

100 LOCATE 7,20:PRINT "unit weight (pcf):"

110 LOCATE 8,20:PRINT "angle of internal friction (degrees):"

96 Chapter 5 CAMINP Routine

120 LOCATE 9,20:PRINT "diameter of boring for pole socket

(inches):"

130 LOCATE 11,10:PRINT "CLIMATE DATA"

140 LOCATE 13,20:PRINT "average daily rainfall (inches):"

150 LOCATE 14,20:PRINT "average daily temperature (degs F):"

160 LOCATE 15,20:PRINT "wind speeds (mph):"

170 LOCATE 16,25:PRINT "sustained average (mph):"

180 LOCATE 17,25:PRINT "gust speeds (mph):"

190 LOCATE 18,20:PRINT "potential ice or snow load (psf):"

200 LOCATE 21,10

205 PRINT "GENERAL TERRAIN AND FOLIAGE CLASSIFICATION:"

210 END SUB

220 SUB GEOMSCRN(ESN$,RV$)

230 CLS

240 LOCATE 1,27:PRINT "FIXED FACILITY SUPPORT SYSTEMS"

245 LOCATE 1,62:PRINT "PROJECT # ";:PRINT USING "\ \";ESN$;

250 LOCATE 2,33:PRINT "Structure Geometry"

255 LOCATE 2,61:PRINT "REVISION # ";:PRINT USING "\\";RV$

260 LOCATE 4,10:PRINT "PLAN VIEW DATA"

270 LOCATE 6,20:PRINT "length of structure (feet):"

280 LOCATE 7,25:PRINT "bay spacings (measured along the

structure length)"

300 LOCATE 9,30:PRINT "@@ @ @ 8"

320 LOCATE 11,30:PRINT "@@ @ @"

340 LOCATE 14,20:PRINT "width of structure (feet):"

345 LOCATE 15,20:PRINT "minimum pole spacing (feet):"

350 LOCATE 17,10:PRINT "ELEVATION DATA"

360 LOCATE 19,20:PRINT "exterior pole height (above ground feet):"

370 LOCATE 20,20:PRINT "exterior poles guyed (Y/N):"

380 LOCATE 21,20:PRINT "allowable netting sag (feet):"

385 LOCATE 22,20:PRINT "allowable displacement error (inches):"

390 END SUB

Chapter 5 CAMINP Routine 97

400 SUB POLSCRN(ESN$,RV$)

410 CLS

420 LOCATE 1,27:PRINT "FIXED FACILITY SUPPORT SYSTEMS"

425 LOCATE 1,62:PRINT "PROJECT # ";:PRINT USING "\ \";ESN$;

430 LOCATE 2,27:PRINT "Support Member Material Screen"

435 LOCATE 2,61:PRINT "REVISION # ";:PRINT USING "\\";RV$

440 LOCATE 4,3

445 PRINT "INDICATE DESIRED SUPPORT MEMBER TO USE (Y-Yes N-No)"

450 LOCATE 6,21:PRINT "ALLOW MODULUS"

460 LOCATE 6,38:PRINT "X-SECTION MOMENT UNIT"

470 LOCATE 7,12:PRINT "LENGTH STRENGTH ELASTIC"

480 LOCATE 7,40:PRINT "AREA INERTIA PRICE"

490 LOCATE 8,5:PRINT "MARK (FT) (KSI) (10**6)"

500 LOCATE 8,39:PRINT "(SQIN) (IN**4) ($/FT) DESCRIPTION"

510 REM

520 END SUB

530 SUB NETSCRN(ESN$,RV$)

540 CLS

550 LOCATE 1,27:PRINT "FIXED FACILITY SUPPORT SYSTEMS"

555 LOCATE 1,62:PRINT "PROJECT # ";:PRINT USING "\ \";ESN$;

560 LOCATE 2,31:PRINT "Netting Material Screen"

565 LOCATE 2,61:PRINT "REVISION I ";:PRINT USING "\\";RV$

570 LOCATE 4,3

575 PRINT "INDICATE DESIRED NETTING TYPE TO USE (Y-Yes N-No)"

580 LOCATE 6,12:PRINT " UNIT NETTING ALLOW"

590 LOCATE 6,40:PRINT "UNIT DRAG UNIT"

600 LOCATE 7,12:PRINT " SIZE THICK STRENGTH"

610 LOCATE 7,39:PRINT "WEIGHT COEFFIC PRICE"

620 LOCATE 8,5:PRINT "MARK (SOFT) (IN) (KSI)"

630 LOCATE 8,38:PRINT "(#/SQFT) (UNITS) ($/SQFT) DESCRIPTION"

640 REM

650 END SUB

660 SUB TENSCRN(ESN$,RV$)

670 CLS

680 LOCATE 1,27:PRINT "FIXED FACILITY SUPPORT SYSTEMS"

685 LOCATE 1,62:PRINT "PROJECT # ";:PRINT USING "\ \";ESN$;

690 LOCATE 2,27:PRINT "Tension Member Material Screen"

695 LOCATE 2,61:PRINT "REVISION # ";:PRINT USING "\\";RV$

700 LOCATE 4,3

705 PRINT "INDICATE DESIRED TENSION MEMBER TO USE (Y-Yes N-No)"

710 LOCATE 6,13:PRINT "ALLOW MODULUS THERMAL"

720 LOCATE 6,37:PRINT " X-SECTION UNIT UNIT"

730 LOCATE 7,11:PRINT "STRENGTH ELASTIC COEFFIC"

740 LOCATE 7,40:PRINT "AREA WEIGHT PRICE"

750 LOCATE 8,5:PRINT "MARK (KIPS) (10**6) (10**-6)"

760 LOCATE 8,39:PRINT "(SQIN) (#/FT) ($/FT) DESCRIPTION"

770 REM

780 END SUB

98 Chapter 5 CAMINP Routine

790 SUB ANCSCRN(ESN$,RV$)

800 CLS

810 LOCATE 1,27:PRINT "FIXED FACILITY SUPPORT SYSTEMS"

815 LOCATE 1,62:PRINT "PROJECT # ";:PRINT USING "\ \";ESN$;

820 LOCATE 2,31:PlINT "Anchor Material Screen"

825 LOCATE 2,61:PRINT "REVISION # ";:PRINT USING "\\";RV$

830 LOCATE 4,3

835 PRINT "INDICATE DESIRED ANCHOR TO BE USED (Y-Yes N-No)"

840 LOCATE 6,21:PRINT "AI.LOW MODULUS"

850 LOCATE 6,38:PRINT " ROD ANCHOR UNIT"

860 LOCATE 7,12:PRINT "LENGTH STRENGTH ELASTIC"

870 LOCATE 7,38:PRINT "DIAMETER DIAMETER PRICE"

880 LOCATE 8,5:PRINT "MARK (INCH) (KIPS) (10*"6)"

890 LOCATE 8,39:PRINT "(INCH) (INCH) ($/EA) DESCRIPTION"

900 REM

910 END SUB

Chapter 5 CAMINP Routine 99

6 DESIGN Routine

INTRODUCTION. This chapter presents a step-by-step procedure to
design tent-like tension structures. The structures in question are cable
networks supported by slender columns or poles cantilevered in the
ground as shown in Figure _,. The exterior poles may be designed with or
without guys. This network of cables and poles is then covered by fabric
or netting to produce the tent-like shelter. The covering will be supported
by the cable network but not attached in any way.

Figure 3. A typical tension structure

The basis of this chapter is the theory for tension structures. The main
load-carrying members in tension structures transfer the applied loading
to the supports by tensile stresses only. No compression or flexure occurs
in these primary members. Cables or ropes will be the main load-carrying
members used herein, and the columns or poles will be designated as the
support structure.

The applications for these tension structures are mainly for temporary
usage, although a %oll-constructed structure may be used as a permanent
fixture. The tent-like structure is well suited as a temporary shelter for
people, equipment, or job sites. These structures provide excellent shelter
from sun, wind, and rain. Another use for these structures is the conceal-
ment of military equipment. These structures can be used to camouflage

100 Chapter 6 DESIGN Routine

military equipment in any terrain. The simplicity of these structures
makes erection quick and easy which is important in the process of con-
cealment of militarily vital equipment and personnel. Not only do the tent
structures conceal an area well, but they also provide excellent shelter
from the elements.

Tension structures are well suited for these applications because of
their efficiency in carrying distributed loads. As shelters or concealment
structures, the loads carried are all distributed loads. The primary loads
carried in these structures are caused by the weight of the cables and
fabric (including the wet weight of the fabric due to rain), and snow and
wind loads.

Other advantages of tension structures are given by Leonard (1988):

(1) Tension structures are lightweight, collapsible, easy to transport
and erect, and relocatable.

(2) Tension structures may be prefabricated.

(3) Tension structures have low installation costs.

(4) Tension structures handle distributed environmental loads well
through direct stress without bending.

(5) Tension structures are load adaptive. They change geometry to
carry loads and changes in loads more efficiently.

Leonard (1988) states that the behavior of a tension structure can be
divided into three phases in its life as a load-carrying body. The first
phase is the deployment phase and is si:!.ply we unfolding of the system
from its collapsed state in transport. During this phase the structure is
stress-free, but care must be used to ensure that no kinks occur in the
cables. The second phase is the prestressing phase in which the cables are
attached to the support structure and possibly tightened to a preselected
point on the cable or a preselected tension in the cable. The loads being
carried in this phase are the weight of the cable and the prestressing
forces. The final phase is the in-service phase when the prestressed sys-
tem is subjected to all of the other dead and live loads over its lifetime.

The deployment phase involves no stresses since the structure has only
been unfolded and not yet erected. This phase will not be included in the
design procedure.

The prestressing phase is the point at which the structure is frt
erected and the cables are tightened in a -pecified manner to obtain the
general shape of the structure. As the cables are tightened, the structure
changes its geometry. Most of the geometry changes in this phase are
simply changes in sag in the cables. Very little strain occurs in the cables

Chapter 6 DESIGN Routine 101

at this point because of light external loads. The prestressing of the
cables causes changes in sag and very small strains in the cable.

The in-service phase has the structure loaded with the larger loads of
wind, rain, and snow. The changes in geometry that the structure exhibits
at this time also involves changes in sag; but now with the higher loads,
the cables begin to have larger strains. The in-service phase has the
highest strains as the prestressing phase has the largest changes in sag.

PROCEDURE. The difficulty in designing or analyzing tension struc-
tures lies in the nonlinear behavior of the cables. With normal structural
members, the deflection of the member is proportional to the load. When
a cable is allowed to sag, this proportionality between load and displace-
ment does not hold true. For a cable, the load increment causing a second
inch of displacement may be considerably higher than the load causing the
first inch of deflection. The nonlinearity is caused by the behavior of sag
in a cable. As tension is applied to the cable, sag is reduced and strain oc-
curs. When sag is large, an increase in tension causes very little strain in
the cable. Most of the force is used in reducing the sag in the cable. As
sag becomes smaller, increases in tension begin to cause more strain in-
crease and less sag decrease. As the sag becomes small, more force is
needed to displace the ends, as the effort is now in stretching the cable
rather than in pulling out the sag. Reducing sag takes a small force com-
pared to straining the cable.

The nonlinearity of the system does not allow a simple solution by
matrix methods. Iterative solutions must be incorporated into the design
procedure to allow the solution of the nonlinear system. For a structure of
any size, hand calculations are incomprehensible; computer solution is the
only efficient means of design. The procedure used herein is an iterative
stiffness matrix solution for which each iteration is a linear solution. The
iterations converge to a final solution as described in the following pages.
The nonlinearity does not allow superposition of loadings, so all loads are
applied at once at the beginning of the procedure to create the case of max-
imum expected tension in each cable. The procedure does however design
for wind load from each of three directions (the fourth direction is always
symmetric to another direction as will be shown later).

MODELING AND ASSUMPTIONS. The tension structure is
modeled as a two dimensional grid in the plane of the plan view of the
structure. The top of each pole is a node, and the nodes are numbered in
the manner shown in Figure 4. Each node has two degrees of freedom:
one each in the X- and Y-directions shown in Figure 4. The degrees of
freedom are numbered in a manner such that the degree of freedom in the
X-direction is one less than twice the node number, and the degree of
freedom in the Y-direction is twice the node number. Although the grid
shows the poles only as node points, the bending stiffness of the poles are
included in the model. Displacements in the vertical direction are
neglected.

102 Chapter 6 DESIGN Routine

13 @ @' ~ QZ.' ~(IF USED)

LX F T

,,w._POLE SPACING BEING DESIGNED

Figure 4. Plan view of a typical tension structure

All structures are rectangular and are subdivided into smaller rec-
tangles. Each smaller rectangle has a cable forming each side and a cable
connecting each pair of diagonally opposite nodes.

The stiffness for a joint is calculated as a stiffness in each of the X-
and Y-directions. The stiffness for a joint is the stiffness of the pole
added to the linearized stiffness of the cables which are put in tension by
the collective force on the node.

The first assumption made in this design is that of small deflection
theory. Simple cable nests allow large deflections to occur, but the struc-
ture being designed has the restraint of the columns. Large deflections
would cause column failure. To have a functioning system, small deflec-
tions at the nodes is a reasonable assumption.

The second assumption is that sag ratios are small. This assumption
must be made in order for the equations used in this procedure to be ap-
plicable. This assumption is reasonable because cables with large sag
ratios are not efficient in transmitting loads.

DESIGN INPUT. The given information for the design procedure
must include the material properties and sizes, structure size, loads, and
whether the structure is guyed or not. The material properties and sizes of
the poles must include modulus of elasticity, moment of inertia, yield
stress, height, cross-sectional area, cross-sectional width, and minimum
distance between poles. The material properties and sizes of the cables
must include modulus of elasticity, maximum tension strength, maximum

Chapter 6 DESIGN Routine 103

sag, cross-sectional area, and linear weight. The structure size must in-
clude the number of bays in one direction and the size of those bays, and
the total length in the other direction. The direction perpendicular to the
bay widths is the direction being designed. The loads other than cable
weight are the fabric wet weight, the snow load, and the wind load. The
angle between the fabric and the ground and the fabric's drag coefficient
must also be given. A choice of guyed or nonguyed exterior poles is
given. And finally the factor of safety to be used for the structure must be
given. More detail on design input is given in Appendix B.

BASIC DESIGN MAP. Once the above information is known, the
design process begins. The points of design are the number of equally-
spaced poles in the direction perpendicular to the specified bay widths,
and the initial prestressing for each cable.

The design begins by calculating the maximum and minimum number
of equally spaced poles in the design direction. The maximum number of
poles is defined by the user's input of the minimum distance allowed be-
tween columns. The minimum number of poles is always two (in the case
that the design direction will have poles only at the extreme comers of the
structure). The design continues until the minimum number of poles
without a column or cable failure is found. The minimum number of
poles defines the maximum column spacing and therefore the most effi-
cient structure. The possibility exists that the structure will fail even at
the minimum spacing specified by the user, so the procedure has
mechanisms to check for this case. This case is checked first so that no
more time is used in the design if the design is impossible because of
column or cable failure for the given information.

The procedure begins by using the maximum number of poles as the
first trial. If this case fails, notification is given and the procedure ends.
If the first case passes the failure criteria, then a new trial number of poles
is used. This next number of poles is the midpoint of the maximum and
minimum number of poles. If a trial number of poles passes the failure
criteria, then this number becomes the new maximum number of poles so
that no more poles than necessary are used. If a trial number of poles
fails the failure criteria, then this number becomes the new minimum num-
ber of poles since it is now known that more poles are needed. To choose
the next trial number of poles, the midpoint of the new maximum and min-
imum is used. This process continues until convergence to the minimum
number of poles to pass the failure criteria.

This basic plan is followed to find the minimum number of poles to
satisfy the given information without failure of column or cable. The
specifics in the design can be broken into six steps: (1) calculating basic
cable geometry, (2) calculating applied loads on cables, (3) calculating
proper unstressed length of cable, (4) preparing direct stiffness method,
(5) solving equations, and (6) interpreting final data.

104 Chapter 6 DESIGN Routine

BASIC CABLE GEOMETRY. Each cable in a structure trial has a
number, a beginning node, and an ending node. The specifics for obtain-
ing this information is given in Appendix B.

Four ratios are calculated for each cable. "FXFL" is the force in the
component X-direction caused by a unit force along the cable's length.
"FYFL" is the force in the component Y-direction caused by a unit force
along the cable's length. "DLDX" is the deflection along the length of the
cable caused by a unit deflection in the component X-direction. "DLDY"
is the deflection along the length of the cable caused by a unit deflection
in the component Y-direction.

Each cable is also classified according to its location and use in the
structure. Nine classifications exist specifying the use of the cable, the
location of the cable, and the direction of the cable. A cable is used either
as part of the roof nest or as a guy. The location of the cable is either inte-
rior or exterior. The direction of the cable is either parallel to the bay
widths, parallel to the designed pole spacings, or diagonal. The specifics
of these classifications can also be found in Appendix B.

APPLIED FORCES ON CABLES. Applied loads on the cables come
from four sources: (1) the weight of the cable, (2) the weight of the net-
ting or covering material and the moisture that it can hold, (3) the weight
of accumulated snow, and (4) the force of the wind. For the purposes of
this design, these forces are reduced to a uniformly distributed load over
the length of the cable. The uniformly distributed loads must at this time
be estimated because the true length of the cable is not known yet. The
horizontal projection of each cable is defined by the given bay widths and
the trial pole spacing in the design direction, but the true length has to be
calculated based on the loads and the amount of sag allowed.

A cell in the structure will be defined as a rectangular region with
dimensions of bay width by trial pole spacing. As shown in Figure 5,
each cell is divided into four triangles by the two diagonal cables. To es-
timate the uniformly distributed loads on the cables, each of these tri-
angles will be divided into three more triangles by connecting the vertices
of a triangle to the centroid of that triangle as shown by the dashed lines
in Figure 6. Each cell is now divided into twelve triangles. Each triangle
has exactly one side in contact with a cable. The load carried by each tri-
angle is considered to be carried by the cable which makes up one of its
sides. The load on each cable is the uniformly distributed load, which is
equal in total force to the loads carried by the triangular areas associated
with each cable. Equations and other specifics for calculating these loads
are given in Appendix B.

UNSTRESSED LENGTH OF CABLE. The unstressed length of
each cable can be calculated if the uniformly distributed load along the
length of the cable is known and the sag in the cable is set to eighty per-
cent of the maximum allowed sag. This unstressed length of cable will
define the initial prestressing stage of the structure. The unstressed length

Chapter 6 DESIGN Routine 105

TRIAL POLE
SPA2ING (PSPC)

Figure 5. Single cell plan view

I I
S ---

Figure 6. Single cell load divisions

106 Chapter 6 DESIGN Routine

is the length the cable must be initially before any kind of stress is added
to the cable. The cable must be marked, hung in place, then tightened to
the markings so that the cable has the correct initial prestressing.

For each cable, the sag is initially set at eighty percent of the maximum
sag allowed. Calculating the sag ratio for each cable we have:

0.8 * SMAX (1)
fo= LO

From Leonard (1988) we have the following:

q *L (2)
8 ,H 0

q• L (3)
'3 2 *H 0

sin L tan 0) (4)

Rearranging Equation 2 and substituting initial conditions into all three
we obtain:

q * L0 (5)H0 = f
'f 8* fo

q * L0 (6)
[00= 2 * H0

To = sin hF - (sinh--- 0 * tan e j (7)

From Leonard (1988) we find:

So VO - V1 q4o [rHo VoT 0 - VITI1 (8)

L0 - qLo 2AEL -L + (qL•-) 2 J

V = Hosinh y + 1I _ 2_ (9)

T = H0cosh Y + P I _-2x (10)

Recognizing the fact that V0 and TO are at x=O, and V1 and T1 are at
x=Lo, inserting this information into Equation 8, and solving for the un-
stressed length of cable So, we find

Chapter 6 DESIGN Routine 107

S0 = [sO (+ h- i

HOL0 H0 [sinh(o + [00)csh(y0 + 0)- sinh(y0 - NO)cosh(yo - Po)]f (11)
2AE- 1+ qL0 "

Knowing the unstressed length of the cable aids in the erection of the
structure. It is much quicker and efficient to be able to tighten a cable to
a premarked point than to try to tighten the cable to a certain force. If
tightening the cables to a certain prestressing force is tried, it is found that
as one cable is tightened, it also prestresses the other cables which have al-
ready been prestressed to the desired amount. This action would cause
over stressing of many cables. Calculating a length of cable which can be
tightened to a certain mark is a simple and quick task. The unstressed
length of each cable is stored in the program in the tenth column of the
"ZZ" array. When the program has finished, the unstressed length of each
cable should be printed in order to correctly erect the structure in the
prestressing phase. It is seen that cables of the same classification and in
the same bay have the same unstressed length.

SETTING UP DIRECT STIFFNESS METHOD. The next step is to
set up the iterative method for solving the nonlinear problem. The method
used for each iteration is a simple direct stiffness method for the equation:

F}--[KJ *frU} (12)

where [F] is the array of X and Y forces at each node, [K] is the matrix
of X and Y stiffnesses at each node, and [U) is the array of X and Y dis-
placements at each node for which the equations must be solved.

The initial forces at the nodes are calculated as if the structure begins
with the poles perfectly rigid. Using Equation 5, Ho is calculated for each
cable and stored in positions in array "ZZ". Ho is the tensile horizontal
force in line with the horizontal projection of the cable. Lo is the original
length of the horizontal projection of the cable. Multiplying the Ho force
by the coefficients "FXFL" and "FYFL", the horizontal force along the
length of the horizontal projection is transformed into the X- and Y-
component forces to be used in the (F) array. Continuously adding the
forces of each cable to the nodes to which they attach, keeping track of
signs (positive is to the left for the X-direction, and upwards for the Y-
direction), the end result is the resultant force on the top of the pole.

The initial stiffnesses of the structure depend on the resultant forces in
the {F) array. In calculating the stiffness at a joint, only the stiffnesses of
the cables which are stretched by the resultant force are included in the
stiffness for that joint. The stiffness at a joint is composed of the stiffness
of the pole (which is a constant at every node) and the stiffnesses of the
cables which are put in tension by the resultant force on the node. The
stiffness for each cable is taken as the force needed to stretch the cable a
unit of tensile deflection.

108 Chapter 6 DESIGN Routine

From Leonard (1988) we have:

H =Ho * Il + K0 * AL (13)

K01 - SO
(14)

0 + AL
K02

K8 * I =- 0 I* + tan20+ -_ o
K0 l -- tan2 8 + 8* *E * fo 2

K SO +1 3 *q * 10 (16)
=L0 1 tan2 - 8 *f0 16. A * E *f0

Looking at these equations, we cai, see that K01 and K02 are constants.
These values are calculated for each cable and stored in the "ZZ" array.
Equation 14 becomes the stiffness equation if a unit deflection is input in
the equation for the delta term. H becomes the force needed to pull the
ends of the cable a unit distance away from each other. Using the "FXFL"
and "FYFL" terms to break the stiffness into X- and Y-component stiff-
nesses, the stiffness matrix is created.

SOLUTION OF EQUATIONS. Knowing the force vector and the
stiffness matrix, the equations can be solved for the deflection vector.
The first deflection vector is not the final deflections for this trial pole
spacing. Due to the nonlinear behavior of cables and the fact that cables
do not exert force in compression, these initial deflections are not the
final deflections. Using the deflections which have been calculated, a
new force vector and stiffness matrix is calculated. The new force matrix
can be calculated by using Equation 14 with the calculated deflections
from the iteration before to arrive at the new forces. The stiffness matrix
is again calculated as the stiffness of the pole and the stiffnesses of the
cables which are stretched by the new force matrix. Again Equation 14 is
used to calculate the stiffness except that the delta term is now the deflec-
tion from the previous iteration plus a unit deflection. A new displace-
ment vector is calculated from the new force vector and stiffness matrix.
The new displacement vector is compared to the old displacement vector,
and if every corresponding pair of displacements agree with each other to
a specified accuracy, then the average of the two sets of displacements is
taken as the final displacements,. If the two sets of displacements do not
correspond to the desired accuracy, then the two arrays are averaged to
find a new initial guess, and the procedure begins again by calculating a
new force vector and stiffness matrix based on the new set of averaged
displacements.

For each trial pole spacing, the procedure is carried through to find the
final displacements for three load cases. The first load case has all

Chdpter 6 DESIGN Routine 109

applied loads and the wind load from the bottom of the plan view. The
second load case has all applied loads and the wind load from the left side
of the plan view. The third load case has all applied loads and the wind
load from the top of the plan view. The wind load from the right of the
plan view is not calculated since it is symmetric to the wind load from the
left case. Wind loads are covered in Appendix B.

When the final deflections for a load case and trial pole spacing is
found, the final forces in all cables and final stresses in all poles are then
calculated and compared to the allowable forces or stresses for each ele-
ment. The forces in each cable are compared to the given maximum ten-
sile force for which the cable can hold reduced by the given factor of
safety. The maximum stress in each pole occurs at the base. Based on the
vertical force each pole supports and the moment created by the deflec-
tions at the top of the pole, the stress can be calculated and compared to al-
lowable stresses for columns subjected to bending. The equations used
for these purposes are found in Appendix B.

FINAL OUTPUT. The output needed in order to erect the designed
structure is the designed pole spacing which is stored as "PSPC" and
the unstressed length of each cable. The unstressed length is the fully-
supported unstressed length which should be marked on the cable in order
that the cable can be put in place and "stretched to" the mark.

References.

Leonard, W. M. (1988). Tension structures. McGraw-Hill Book Com-
pany, New York, NY.

110 Chapter 6 DESIGN Routine

7 FOOTING Routine

The FOOTING routine is designed to calculate the required depth of
the foundations for the individual support members. The routine is
CALLed by the MAIN program at the completion of the design of the
specified structural system (Chapter 1 Main Program). The arguments to
the routine are as follows:

(1) Unit weight of the soil, GAMMA, pounds/ft 3

(2) Soil cohesion, COH, pounds/ft 2

(3) Angle of internal friction of the soil, PHI, degrees

(4) Diameter of the foundation, DIA, inches

(5) Height of support member, HT, feet

(6) Maximum moment in support member, M, foot-pounds

The FOOTING routine iteratively determines the depth of the founda-
tion required to resist the maximum moment and maximum lateral force
transmitted from the support member. The development of the formula-
tions are from Czerniak (1957). An initial depth of 0.25 ft is selected, and
the moment and lateral force on the foundation are calculated. The depth
is incremented by 0.25 ft until the calculated moment and !ateral force are
less than the allowable values. The final output of the routine is written to
the scratch sequential data file named FOOTING.DAT. The final output
values are as follows:

(1) Derived depth to prevent overturning, feet

(2) Applied moment for derived depth, foot-pounds

(3) Applied force for derived depth, pounds

(4) Allowable moment, foot-pounds

(5) Allowable force, pounds

Chapter 7 FOOTING Routine 111

The formulations required to calculate the moment and lateral force as
a function of foundation depth are as follows:

Ph = kyhhtan2 0 + 45 + 2ctan + 45J (1)

where

Ph = horizontal pressure against vertical plane, psf

k = efficiency factor (assumed 2.0)

y = unit weight of the soil, pcf

h = foundation depth, feet

0 = angle of internal friction, degrees

c = soil cohesion, psf

2 a
(2)

where

p = earth pressure against pile at a distance of a/2 from the
resisting surface, psi

a = distance from resisting surface to pivot point, 0.70h, feet

Pa = earth pressure against pile at a distance h, (2/3)Ph, psf

2 2 ph2 (3a - 2h) (3)T= pa-- a
3 3 a2

where T = total pressure on the back of the pile, pounds per foot of
diameter

M0 = _ph3 (4a - 3h) (4)

3a2

where M. = moment per foot of pile diameter, applied at the resisting
surface, foot-pounds per foot of diameter

The source codes for the FOOTING routine are provided below:

112 Chapter 7 FOOTING Routine

3910 SUB FOOTING(GAMMA,COHPHI,DIA,HT,M)

3920 REM NEW PROGRAM TO CALCULATE DEPTH OF FOOTING

3950 REM

3960 REM **** A=DISTANCE TO PIVOT POINT

3965 REM P=EARTH PRES. ON PILE AT DIST. A/2:

3970 REM FO=LATERAL FORCE PER FOOT OF PILE DIA. = F/DIA*12

3980 REM MOF=MOMENT PER FOOT OF PILE DIA. = M/DIA*12

3990 REM PH-PASSIVE EARTH PRESSURE: PA=(2/3)*PH

4000 REM

4010 F=M/HT:FO=F/DIA*12:MOF=M/DIA*12

4020 K=2:NPHI=(TAN((45+PHI/2)*(3.141592654#/180)))^2

4030 H=0.25

4040 A=.7*H:PH=K*GAMMA*H*NPHI+2*COH*SQR(NPHI)

4050 PA=(2/3)*PH:P-(A/H)^2*PA/(4*(I-(A/H)))

4060 T=2/3*P*A-2/3*(P*H^2/A^2)*(3*A-2*H)

4070 MO=-P*H^3*(4*A-3*H)/(3*A^2)

4080 IF T>FO AND MO>MOF THEN 4110

4100 H-H+0.25:GOTO 4040

4105 REM

4110 OPEN "FOOTING.DAT" FOR OUTPUT AS #i

4120 A$="LENGTH TO PREVENT OVERTURNING ######.### FEET"

4130 PRINT #1,USING A$;H

4140 A$="MOMENT APPLIED ######.### FT-POUNDS"

4150 PRINT #1,USING A$;MOF*DIA/12

4160 A$="ALLOWABLE MOMENT ######.### FT-POUNDS"

4170 PRINT #1,USING A$;MO*DIA/12

4180 A$="LATERAL FORCE APPLIED ######.### POUNDS"

4190 PRINT #1,USING A$;FO*DIA/12

4200 A$="ALLOWABLE LATERAL FORCE ######.### POUNDS"

4210 PRINT #1,USING A$;T*DIA/12

4220 CLOSE #1

4230 END SUB

Reference.

Czerniak, E. (1957 (Mar)). "Resistance to overturning of single, short
piles," ASCE, Journal of the Structural Division (Paper 1188).

Chapter 7 FOOTING Routine 113

8 ANCDES Routine

The ANCDES routine is designed to calculate the capacity of the
anchors selected for the structure. A maximarnm of five anchor types may
be selected (see Chapter 5 CAMINP Routine). The routine is CALLed by
the MAIN program at the completion of the footing/foundation design for
the specified structural system (Chapter 1 Main Program). The arguments
to the routine are as follows:

(1) Unit weight of the soil, GAMMA, pounds/ft 3

(2) Soil cohesion, COH, pounds/2

(3) Angle of internal friction of the soil, PHI, degrees

(4) Maximum tension in the tension members, P, pounds

The remainder of the data required by the ANCDES routine are ex-
tracted from the labeled COMMON block ANCHORS which contains the
data for up to five anchor types, as follows:

(1) Five-character name of the selected anchor, ANCMK$

(2) Length of the anchor rod, ANLEN, inches

(3) Allowable tensile strength of the rod, ANALL, kips

(4) Diameter of the anchor helix, ANDIA, inches

(5) Unit cost of the anchor, ACOST, $/each

(6) 15-character description of the anchor, ANCDS$

A bearing capacity factor is calculated as a function of the angle of in-
ternal friction for the soil selected. If the soil is cohesionless (COH=O),
the bearing capacity factor is set to zero. For each anchor whose rod ten-
sile strength is greater than the tensile load applied, a bearing capacity is
calculated as a function of the anchor helix area (AH), effective overbur-
den pressure (Q), bearing capacity factor (NQ), and the soil cohesion

114 Chapter 8 ANCDES Routine

(COH). The formulations for these calculations are provided below. The
program output is directed to the data file ANCHOR.DAT on the default
disk drive. The output to this data file are as follows:

(1) Helix diameter, inches

(2) Assumed depth of the helix, inches

(3) Helix bearing capacity, pounds

(4) Maximum tensile load applied from the tension member, pounds

(5) Maximum tensile strength of the anchor rod, pounds

Related Design Formulations

NQ = 115.51541- 23.770564 + 1.71293D2

- 0.05528(p3 + 0.0008050 4 - 3.70883 x 10.0-6 p5 (1)

Q =Y (2)

S1(3)

Ah - 4

Qh= Ah (9.Oc + Q x NQ) (4)

where

NQ = bearing capacity factor

S= soil angle of frictiov, degrees

Q = effective overburden pressure, pounds/ft 2

-, = soil unit weight, pounds/ft 3

L = assumed depth as effective length of the rod, feet

Ah = projected helix area, ft2

d = helix diameter, feet

Qh = helix bearing capacity, pounds

c = soil cohesion, pounds/ft 3

The source codes for the ANCDES routine are provided below:

Chapter 8 ANCDES Routine
115

4240 SUB ANCDES(GAMMA,COH,PHIP)

4250 REM PROGRAM FOR ANCHOR DESIGN ON GUYED STUCTURES ONLY

4260 OPEN "ANCHOR.DAT" FOR OUTPUT AS #1

4270 PRINT #1, " Diameter Depth Capacity Max Load

Max Strength"

4280 PRINT #i, (INCH) (INCH) (LBS) (LBS)

(LBS)

4290 PRINT #1,

4300 AS= ####.## #####.## ######.# #######.#

4310 NQ=115.51540878322#-23.77055843189#*PHI+1.71292587283#*PHI^2

4320 NQ=NQ-.05528105205#*PHI^3+.0008049511#*PHI^4-3.70883E

-06*PHI^5

4330 FOR JZ=1 TO NANC

4335 DIA=ANDIA(JZ) :D=ANLEN(JZ) :RDSTR=ANALL(JZ)*1000!

4340 IF RDSTR >= P THEN

4350 AH=3.141592654#*(DIA/12)^2/4

4360 IF PHI=0 THEN NQ=0:GOTO 4380

4370 Q=GAMMA*D/12

4380 QH-AH*(9*COH+Q*NQ)

4390 PRINT #1, USING A$;DIA,D,QH,P,RDSTR

4400 ENDIF

44i0 NEXT JZ:CLOSE #1

4420 END SUB

116 Chapter 8 ANCDES Routine

9 OUTPUT Routines

The Camouflage Program provides two major forms of program output
immediately after the various designs of the structural system are com-
pleted. The first output form consists of a graphic display of a plan view
of the structure with a printer option. The second output form consists of
a complete record of the project input screens, structure design output,
footing/foundation design output, anchoring design output, and a summary
of the structural materials required. These data are written to a disk file,
and through the UTILITY routine functions, may be reviewed on the
screen, copied to floppy disk, dumped to the printer, or erased. Each of
these output forms will be described and the associated source codes
provided.

Graphic/Printer Plan View. At the successful conclusion of the
design routines, the DRAW program is initiated. The DRAW program is a
stand-alone executable routine written in FORTRAN and is accessed by
the Camouflage MAIN routine by the SHELL command. The source
codes for the DRAW program are provided in Appendix C. The inputs re-
quired by the DRAW program are written to the sequential data file name
CARRY.DAT in the MAIN routine before the SHELL is initiated. The
input requirements of the DRAW program are as follows:

1. Port number of the desired display device,

2. Model number of the desired display device,

3. Maximum size of the display in the X dimension in inches,

4. Maximum size of the display in the Y dimension in inches, and

5. A single line of descriptive text to be displayed along the bottom
boundary of the graphic display.

The first four data items are provided on the first sequential line of
input in the CARRY.DAT data file. These data are established when the
DEVICE utility program (see Chapter 3 Utility Routines) is executed.
The initial display of the structural plan view will be provided on the
monitor of the computer system. The port and model numbers correspond

Chapter 9 OUTPUT Routines 117

to the type of monitor specified during the execution of the DEVICE pro-
gram. The maximum X and Y sizes of the display are assumed to be
9.0 inches and 7.0 inches, respectively. The descriptive text consists of
the project name, revision number, and 28 characters of fixed text. The
plan view of the final structural design is displayed on the monitor until
any keystroke is made. The source codes illustrating the data preparation
for the initial execution of the DRAW program are provided below:

3480 REM DESIGN COMPLETE - GRAPHIC PROGRAM OUTPUT

3490 OPEN "DEVICES" FOR INPUT AS #1:NLINE-1

3500 LINE INPUT #1, AS:CALL SCAN(A$,Vo,NN,B$(),NW)

3510 IF B$(1p="PRINT" THEN PPORT=V(1) :PMODEL=V(2) :PSCALE=V(3)

3520 IF B$(1)-"SCREEN" THEN SPORT-V(1) :SMODEL=V(2) :PSCALE=V(3)

3530 IF NLINE-1 THEN NLINE-2:GOTO 3500

3540 CLOSE #1

3550 REM

3560 REM INPUT DATA FOR DRAW PROGRAM

3570 OPEN "CARRY.DAT" FOR OUTPUT AS #i

3580 XPAGE=9!:YPAGE-7!:C$=" #### #### #####.### #####.###"

3590 PRINT #1, USING C$;SPORT,SMODEL,XPAGE,YPAGE

3600 D$=" PROJECT: \ \ REV: \\ CAMOUFLAGE DESIGN

PLAN VIEW"

3610 PRINT #1, USING D$;ESN$,RV$:CLOSE #1

3620 SHELL "DRAW < CARRY.DAT"

The contents of the sequential data file DEVICES were established
during the execution of the DEVICE program. The type of monitor and
printer were defined and the desired size of the printer plot was specified.
The data for the port and model numbers of the monitor are extracted
from the DEVICES data file as SPORT and SMODEL. These data and the
assumed page size of 9.0 inches by 7.0 inches are written to the sequential
data file CARRY.DAT. The project name and revision number are written
to CARRY.DAT on the second line of sequential output. The SHELL to
the DRAW program specifying that the program input is provided by the
data file CARRY.DAT will generate the first display of the structural plan
view.

The second display of the structural plan view is an optional display to
the specified printer device. The following prompt is provided for this op-
tional display:

Plot to Printer (Y/N) ?

If a printer plot is not desired, a response of N will suspend the graphic
output for the project. A response of Y (or y) will provide a printer plot of
the plan view with a page size as specified from the execution of the
DEVICE program. At the conclusion of the printer plot, the generation of
the second output form of the program is initiated. The source codes for
the printer plot generation are provided below:

118 Chapter 9 OUTPUT Routines

3640 COLOR 15,1,1:CLS:LOCATE 24,2:INPUT "Plot to Printer

(Y/N) ";AS

3650 IF A$-"y" THEN A$-"Y"

3660 IF AS-"Y" THEN

3670 XPAGE-10!:IF PSCALE>I! THEN XPAGE=13!

3680 YPAGE-7.5:IF PSCALE>l! THEN YPAGE-10!

3690 OPEN 'CARRY.DAT" FOR OUTPUT AS #1

3700 PRINT #1, USING C$;PPORT,PMODEL,XPAGE,YPAGE

3710 PRINT #1, USING D$;ESN$,RV$:CLOSE #1

3720 SHELL "DRAW < CARRY.DAT"

3730 ENDIF

3740 KILL "CARRY.DAT"

The sequential data file CARRY.DAT is rewritten ior a printer plot
using the port (PPORT) and model (PMODEL) numbers of the specified
printer and a page size of either 8.5 by l1.0 inches or 11.0 by 14.0 inches.
One-inch borders on all sides are provided. At the conclusion of the
printer plot generation, the data file CARRY.DAT is erased (KILLed).

DROUTrUT Routine. The final output form of the Camouflage Pro-
gram consists of the complete project input, results of the design of the
ntructure, results of the footing/foundation design, results of the anchoring
design (if the structure were guyed), and a summary of the structural
materials required. Each of these output forms are generated by the
DROUTPUT routine, which is called by the MAIN routine immediately
after the graphic displays are completed. The arguments of the DROUT-
PUT routine are as follows:

1. Six-character project name, ESN$,

2. One-character revision number, RV$,

3. Designated disk drive for the output, DD$,

4. Program user number, DLNUM, and

5. Program version number, PGVER$.

The designated disk drive, program user number, and program version
number are extracted from the random access data file named COMFIL.
These data were provided during the execution of the VALID program
(see Chapter 3 Utility Routines). If this data file does not exist, execution
will continue, and the output will be directed to the default disk drive
(DD$=blank) of the computer system. The program user and version num-
bers will both be zero. All of the output generated by the DROUTPUT
routine will be written to a sequential data file on the designated disk
drive. The name of the output data file is defined by the project name and
revision number as follows:

Chapter 9 OUTPUT Routines 119

Pxxxxxxy.PRT

where

P File name prefix

xxxxxx Six-character project name

y One-character revision number

PRT File extension name

Project Input. The first output form generated consists of each input
screen for which data were provided. A minimum of six and a maximum
of ten screens will be displayed on the monitor screen and while being
written to the designated .PRT data file at the same time. The output
screens are as follows:

1. Site Specific Data Screen,

2. Structure Geometry Screen,

3. Support Member Material Screens (maximum of two),

4. Netting Material Screens (maximum of two),

5. Tension Member Material Screens (maximum of two), and

6. Anchor Material Screens (maximum of two).

The screen displays are provided in the DATADUMP routine, and the
data file generation of the screens is provided in the PRINTFILE routine.
The DATADUMP routine is CALLed from the DROUTPUT routine, and
the PRINTFILE routine is CALLed from the DATADUMP routine. The ar-
guments of the DATADUMP routine are the project name, ESN$, the
revision number, RV$, and the designated output disk drive, DD$. The ar-
guments of the PRINTFILE routine are the desired function number,
NFUN, and the device number of the output data file, NFILE. Each of
these routines will be described and source codes provided.

DATADUMP Routine. The DATADUMP routine successively reads
the input screen data from the project data file, and if appropriate, dis-
plays the designated screen and its data on the monitor. Each screen is
performed separately, and no user responses are required between screen
displays. The project data file, data files for the field locations and field
lengths, and the data file for the program output are OPENed before the
screen displays are initiated. For each screen (NPR), the sequence of pro-
gram steps is the same. The field locations and field lengths are extracted
from the DATA.LOC and DATA.FLD data files and loaded into the
LPTS() and FLD0 arrays. If the beginning address of the screen data

120 Chapter 9 OUTPUT Routines

(IREC(NPR)) is defined (not zero), the screen data are extracted from the
project data file using the DSKRD routine and loaded into the VAR$()
array. The appropriate screen routine is CALLed to display the desired
screen, and the SCRNDUMP routine is CALLed to display the screen
data. Following the screen display, the PRINTFILE routine is CALLed to
append the screen display to the designated output file. A routine function
(NFUN) of one specifies this desired function, and the output file device
number (NFILE) is lour. Two s•,reens will be printed on each page of out-
put. At the conclusion of the file output, a fixed border (====) is printed
to subdivide the screen output on the page if the screen displayed is the
first screen on the page. If the screen display is the second screen on the
page, a form feed (CHR$(12)) is printed. The source codes for the
DATADUMP routine are provided below:

3220 SUB DATADUMP(ESN$,RV$,DD$)

3230 REM

3240 COLOR 15,1,1:CLS

3260 FL$="P"+MID$(ESN$,1,6)+MID$(RV$,1,1)+".DAT'

3270 PL$="P"+MID$(ESN$,1,6)+MID$(RV$,1,1)+".PRT"

3280 OPEN DD$+FL$ AS #1 LEN=128:FIELD #1, 128 AS AA$

3290 OPEN DD$+"DATA.LOC" AS #2 LEN=4:FIELD #2, 4 AS DL$

3300 OPEN DD$+"DATA.FLD" AS #3 LEN=4:FIELD #3, 4 AS DF$

3310 OPEN PL$ FOR OUTPUT AS #4

The initial functions of the DATADUMP routine define the project data
and the output data file names (FL$ and PL$), OPEN the project data file,
OPEN the screen field location., and field lengths data files (DATA.LOC
and DATA.FLD), and OPEN the output data file. The site specific data
are contained on the first screen. These data are read from the project
data file, and the site specific data screen and its data are written to the
output data file. The source codes for this portion of the output are
provided below:

3330 REM DUMP SITE SPECIFIC DATA ON FIRST PAGE

3340 NPR=1:CALL GETLOC(NPR,DUM()

3350 FOR I=1 TO NAD(NPR):LPTS(I)=DUM(I):NEXT I

3360 CALL GETFLD(NPR,DUM()

3365 FOR I=1 TO NAD(NPR):FLD(I)=DUM(I):NEXT I

3370 FREC-IREC(NPR) :CALL DSKRD(FREC,NDUM,DUMo(),DUM$())

3380 FOR I-1 TO NDUM:VAR$(I)-DUM$(I):NEXT I

3390 IST=I:IEND=NDUM

3395 CALL SITESCRN(ESN$,RV$) :CALL SCRNDUMP(IST, IEND)

3400 NFUN=1:NFILE=4:CALL PRINTFILE(NFUN,NFILE)

3410 PRINT #4, " :PRINT #4, "..

3420 FOR I=1 TO 80:PRINT #4, "=";:NEXT I:PRINT #4,

":PRINT #4, " "

The next output generated contains the input data for the structure
geometry screen. The output of the site specific data and the structure
geometry screen are written to the first page of output. At the conclusion

Chapter 9 OUTPUT Routines 121

of this output, a form feed (CHR$(12)) character will be written to the
data file. The source codes for this portion of the output are provided
below:

3440 REM STRUCTURE GEOMETRY ON FIRST PAGE ALSO

3450 NPR=2:CALL GETLOC(NPR,DUM()

3460 FOR I-1 TO NAD(NPR):LPTS(I)-DUM(I):NEXT I

3470 CALL GETFLD(NPR,DUM())

3475 FOR I-1 TO NAD(NPR):FLD(I)-DUM(I):NEXT I

3480 FREC-IREC(NPR) :CALL DSKRD(FREC,NDUM,DUM(),DUM$())

3490 FOR I-1 TO NDUM:VAR$(I)-DUM$(I):NEXT I

3500 IST=1:IEND=NDUM

3505 CALL GEOMSCRN (ESN$,RV$) :CALL SCRNDUMP (IST, IEND)

3510 NFUN1:NFILE-4:CALL PRINTFILE (NFUN,NFILE)

3520 PRINT #4, CHR$(12)

The next output generated is up to two screens of support member data.
One of the two screens (NPR=3 or 4) will have at least one line of input
and will be displayed. If either of the two screens contains no data, it will
not be displayed. The source codes for this portion of the output are
provided below:

3530 REM

3540 REM SUPPORT MEMBER DATA BEGINNING ON PAGE TWO

3550 NPR-3:NPG-0:NLOC-NAD (NPR) *15

3560 FREC-IREC(NPR):IF FREC=0 THEN 3740

3570 CALL GETLOC(NPR,DUM()):FOR I=2 TO 15:FOR J=1 TO NAD(NPR)

3580 IJ-(I-1)*NAD(NPR)+J:DUM(IJ)=DUM(J)+100*(I-1) :NEXT J:NEXT I

3590 FOR I-1 TO NLOC:LPTS(I)=DUM(I):NEXT I

3600 CALL GETFLD(NPR,DUM)):FOR 1-2 TO 15:FOR J-1 TO NAD(NPR)

3610 IJ-(I-1)*NAD(NPR)+J:DUM(IJ)-DUM(J) :NEXT J:NEXT I

3620 FOR I-1 TO NLOC:FLD(I)=DUM(I):NEXT I

3630 CALL DSKRD(FREC,NDUM,DUMo,DUM$())

3640 FOR I-1 TO 15:IJ=(I-1)*NAD(NPR)+1

3650 A$-DUM$(IJ):CALL BLANK(A$,NBLK):IF NBLK>0 THEN 3670

3660 NEXT I:GOTO 3740

3670 FOR I-I TO NDUM:VAR$(I)-DUM$(I):NEXT I

3680 CALL POLSCRN(ESN$,RV$)

3685 IST-i: IEND-NDUM:CALL SCRNDUMP (IST, IEND)

3690 NFUN-1:NFILE=4:CALL PRINTFILE(NFUN,NFILE)

3700 IF NPG-1 THEN PRINT #4, CHR$(12):NPG=0:GOTO 3740

3710 PRINT #4, " ":PRINT #4,

3720 FOR I-1 TO 80:PRINT #4, "=";:NEXT I:PRINT #4,

".:PRINT #4, " ":NPG-1

3730 REM

3740 IF NPR<4 THEN NPR-NPR+1:GOTO 3560

The next output generated is up to two screens of netting data. One of
the two screens (NPR=5 or 6) will have at least one line of input and will
be displayed. If either of the two screens contains no data, it will not be

122 Chapter 9 OUTPUT Routines

displayed. The source codes for this portion of the output are provided
below:

3760 REM NETTING MATERIAL DATA

3770 NPR=5:NLOC=NAD(NPR)*15

3780 FREC=IREC(NPR):IF FREC=O THEN 3960

3790 CALL GETLOC(NPR,DDUM(o):FOR 1=2 TO 15:FOR J=1 TO NAD(NPR)

3800 IT=(i-1)*NAD(NPR)+J:DUM(IJ)=DUM(J)+100*(I-1):NEXT J:NEXT I

3810 FOR I-1 TO NLOC:LPTS(I)-DUM(I):NEXT I

3820 CALL GETFLD(NPR,DUMo):FOR I=2 TO 15:FOR J=1 TO NAD(NPR)

3830 IJ=(I-1)*NAD(NPR)+J:DUM(IJ)=DUM(J):NEXT J:NEXT I

3840 FOR I=1 TO NLOC:FLD(I)=DUM(I):NEXT I

3850 CALL DSKRD(FREC,NDUMDUM),DUM$())

3860 FOR I-1 TO 15:IJ=(I-1)*NAD(NPR)+l

3870 A$-DUM$(IJ):CALL BLANK(A$,NBLK):IF NBLK>0 THEN 3890

3880 NEXT I:GOTO 3960

3890 FOR I-1 TO NDUM:VAR$(I)=DUM$(I):NEXT I

3900 CALL NETSCRN(ESN$,RV$)

3905 IST=1:IEND=NDUM:CALL SCRNDUMP(IST, IEND)

3910 NFUN=1:NFILE=4:CALL PRINTFILE(NFUN,NFILE)

3920 IF NPG=1 THEN PRINT #4, CHR$(12):NPG=0:GOTO 3960

3930 PRINT #4, " :PRINT #4, "..

3940 FOR I=1 TO 80:PRINT #4, '=";:NEXT I:PRINT #4, " :PRINT #4,

" ":NPG-1

3950 REM

3960 IF NPR<6 THEN NPR=NPR+1:GOTO 3780

The next output generated is up to two screens of tension member data.
One of the two screens (NPR=7 or 8) will have at least one line of input
and will be displayed. If either of the two screens contains no data, it will
not be displayed. The source codes for this portion of the output are
provided below:

3980 REM TENSION MEMBER DATA

3990 NPR-7:NLOC-NAD(NPR)*15

4000 FREC=IREC(NPR):IF FREC=0 THEN 4180

4010 CALL GETLOC(NPR,DUMo):FOR 1=2 TO 15:FOR J=1 TO NAD(NPR)

4020 IJ=(-l)*NAD(NPR)+J:DUM(IJ)=DUM(J)+100*(I-1):NEXT J:NEXT I

4030 FOR I-1 TO NLOC:LPTS(I)-DUM(Il):NEXT I

4040 CALL GETFLD(NPR,DUMo):FOR 1-2 TO 15:FOR J=1 TO NAD(NPR)

4050 IJ-(I-1)*NAD(NPR)+J:DUM(IJ)=DUM(J):NEXT J:NEXT I

4060 FOR I-1 TO NLOC:FLD(I)=DUM(I):NEXT I

4070 CALL DSKRD(FREC,NDUM,DUMo,DUM$())

4080 FOR I-1 TO 15:IJ-(I-1)*NAD(NPR)+l

4090 A$-DUM$(IJ):CALL BLANK(A$,NBLK):IF NBLK>0 THEN 4110

4100 NEXT I:GOTO 4180

4110 FOR I=1 TO NDUM:VAR$(I)=DUM$(I):NEXT I

4120 CALL TENSCRN(ESN$,RV$)

4125 IST-1:IEND-NDUM:CALL SCRNDUMP(IST,IEND)

4130 NFUN-1:NFILE=4:CALL PRINTFILE(NFUN,NFILE)

Chapter 9 OUTPUT Routines 123

4140 IF NPG=1 THEN PRINT #4, CHR$(12):NPG=0:GOTO 4180

4150 PRINT #4, " ":PRINT #4, " "

4160 FOR I=1 TO 80:PRINT #4, "=";:NEXT I:PRINT #4,

":PRINT #4, " ":NPG=l

4170 REM

4180 IF NPR<8 THEN NPR=NPR+1:GOTO 4000

The next output generated is up to two screens of anchor data. One of
the two screens (NPR=9 or 10) will have at least one line of input and will
be displayed. If either of the two screens contains no data, it will not be
displayed. When the last screen has been written to the data file, the
routine is completed, and control is returned to the DROUTPUT routine.
The source codes for this portion of the output are provided below:

4200 REM ANCHOR DATA

4210 NPR=9:NLOC-NAD(NPR)*15

4220 FREC=IREC(NPR):IF FREC=0 THEN 4400

4230 CALL GETLOC(NPR,DDUM()):FOR I=2 TO 15:FOR J=1 TO NAD(NPR)

4240 IJ=(I-1)*NAD(NPR)+J:DUM(IJ)=DUM(J)+100*(I-1):NEXT J:NEXT I

4250 FOR I=1 TO NLOC:LPTS(I)=DUM(I):NEXT I

4260 CALL GETFLD(NPR,DUMo):FOR I=2 TO 15:FOR J=1 TO NAD(NPR)

4270 IJ=(I-1)*NAD(NPR)+J:DUM(IJ)=DUM(J):NEXT J:NEXT I

4280 FOR I=1 TO NLOC:FLD(I)=DUM(I):NEXT I

4290 CALL DSKRD(FREC,NDUM,DUMo,DUM$())

4300 FOR I=1 TO 15:IJ=(I-1)*NAD(NPR)+1

4310 A$=DUM$(IJ):CALL BLANK(A$,NBLK):IF NBLK>0 THEN 4330

4320 NEXT I:GOTO 4400

4330 FOR I=1 TO NDUM:VAR$(I)=DUM$(I):NEXT I

4340 CALL ANCSCRN(ESN$,RV$)

4345 IST=1:IEND=NDUM:CALL SCRNDUMP(IST, IEND)

4350 NFUN=1:NFILE=4:CALL PRINTFILE(NFUN,NFILE)

4360 IF NPG=1 THEN PRINT #4, CHR$(12):NPG=0:GOTO 4400

4370 PRINT #4, " :PRINT #4, "..

4380 FOR I=1 TO 80:PRINT #4, "=";:NEXT I:PRINT #4,

":PRINT #4, " ":NPG=I

4390 REM

4400 IF NPR<10 THEN NPR=NPR+I:GOTO 4220

4410 IF NPG=1 THEN PRINT #4, CHR$(12)

4420 REM

4430 CLOSE

4440 END SUB

PRINTFILE Routine. The PRINTFILE routine allows the current dis-
play on the monitor to be: (1) appended to a designated file device,
(2) dumped to the printer, or (3) both appended to a file and dumped to
the printer. The function number (1-3) designates what action is desired,
and the file number designates the device number of the desired output
file. On each CALL to the PRINTFILE routine, the function number
(NFUN) is specified as 1 (append screen display to a designated data
file), and the file device number (NFIL) is specified as 4 (.PRT sequential

124 Chapter 9 OUTPUT Routines

output file name). The source codes for the PRINTFILE routine are
provided below:

2770 SUB PRINTFILE(NFUN, NFIL)

2780 REM THIS SUBROUTINE IS TO SAVE THE SCREEN TO A FILE AND/OR

2790 REM DUMP THE SCREEN TO THE PRINTER

2800 REM

2810 REM NFUN = THE FUNCTION OPTION NUMBER

2820 REM FILE$= THE FILE NAME TO SAVE SCR..A DATA

2830 REM

2840 REM NFIL = THE STARTING BUFFER NUMBER TO OPEN FILES

2850 REM NROW = THE TOTAL NUMBER OF ROWS ON THE SCREEN

2860 REM NCOL = THE TOTAL NUMBER OF COLUMNS ON THE SCREEN'

2870 REM PAGE$= THE FLAG TO FEED NEW FORM (Y/N)

2880 REM

2890 ON ERROR GOTO CLOSEFILE

2900 IF NFUN < 1 OR NFUN > 3 THEN

2910 CLS: PRINT "ERROR FOUND IN FUNCTION OPTION NUMBER"

2920 PRINT "1. APPEND THE SCREEN TO A FILE"

2930 PRINT "2. DUMP THE SCREEN TO PRINTER"

2940 PRINT "3. BOTH OF FUNCTION 1. AND FUNCTION 2."

2950 INPUT "PRESS ANY KEY TO CONTINUE . . . ",ANS$

2960 GOTO STOPEXECUTION

2970 END IF

2980 NROW-24:NCOL=80

2990 M = NFIL

3000 FOR I = 1 TO NROW

3010 FOR J = 1 TO NCOL

3020 IF NFUN=1 OR NFUN=3 THEN

3030 IF J=NCOL THEN

3040 PRINT fM,CHR$(SCREEN(I,J))

3050 ELSE

3060 PRINT #M,CHR$(SCREEN(I,J));

3070 END IF

3080 END IF

3090 IF NFUN=2 OR NFUN=3 THEN

3100 PRINT #NFILCHR$(SCREEN(I,J));

3110 END IF

3120 NEXT J

3130 NEXT I

3140 REM

3150 STOPEXECUTION:

3160 END SUB

3170 REM

3180 CLOSEFILE:

3190 RESUME NEXT

Structural Design. The results of the structural design (see Chapter 6
DESIGN Routine) consists of the following: (1) the deflections for the
top of each support member, and (2) a list of the tension members used to

Chapter 9 OUTPUT Routines 125

provide lateral support between the support members, and guyed support
of the exterior support members.

The node numbers of the structural system are numbered at the support
members as follows: the lower left support member is node number 1;
from the lower left support member, succeeding exterior support members
to the right (along the width of the structure) are numbered sequentially
until the lower right support member is numbered. The next numbered
support member is the left-most member on the second bay (along the
length of the structure) of supports. Numbering continues from that sup-
port to the right along the width of the structure to the right-most member.
Numbering continues up the bays and across the width of the structure
until the upper right support member is numbered. An example of node
numbering for a structure with two 20-foot bays and three 10-foot member
spacings is shown in Figure 7 below:

1 9 10 11 12

5 6 7 8

T1

1 2 3 4

30.00

Figure 7. Node number scheme for tension structures

Before the remainder of the output forms are provided, two data items
must be extracted from the project data file. These two data items are the
specified height of the structure and the specified guy condition for the
structure. Both of these data items are contained on the structure
geometry screen (NPR=2). The structure height (HTPOL) is data item
number 24, and the guy condition (GUY$) is data item number 25. The
source codes required to defined the project data file name, OPEN the
project data file, OPEN the screen field length data file (DATA.FLD), and
extract these two data items are provided below:

126 Chapter 9 OUTPUT Routines

210 REM

220 REM LOAD HEIGHT OF STRUCTURE AND GUY CONDITION

230 FL$-"P"+MID$(ESN$, 1,6)+MID$(RV$,1,1)+".DAT"

240 OPEN DD$+FL$ AS #1 LEN=128:FIELD #i, 128 AS AA$

250 OPEN DD$+"DATA.FLD" AS #3 LEN=4:FIELD #3, 4 AS DF$

260 REM STRUCTURE GEOMETRY

270 NPR=2:CALL GETFLD(NPR,DUMo)

280 FREC-IREC(NPR) :CALL DSKRD(FRECNDUM,DUMo,DUM$())

290 A$=DUM$(24):CALL SCAN(AS,Vo,NN,B$(),NW):HTPOL=V(1)*12

300 GUY$SMID$ (DUM$ (25), 1,1)

310 CLOSE #3:CLOSE #1

The geometry of the structure must be defined next. The bay spacings
and derived pole spacings along the width dimension of the structure are
needed to determine the number of support members and tension members
included in the structure. The bay spacings were written to the DESIN-
PUT.DAT sequential data file to serve as the input to the DESIGN routine.
The first record of the data file contains the number of bay spacings
(NBAY), and the individual bay spacings (BAYSO) are contained on suc-
ceeding records (one bay spacing per record). The pole spacings along
the width dimension of the project were determined by the DESIGN
routine and written to the DESOUTPT.DAT sequential data file. The num-
ber of pole spacings (NPOL) is contained in the first record, and the value
of each pole spacing (PSPAC) is contained on the second record. The
source codes required to extract these data items are provided below:

350 OPEN "DESINPUT.DAT" FOR INPUT AS #i

360 LINE INPUT #1, AS:CALL SCAN(A$,Vo,NN,B$(),NW):IF V(1)=0

THEN 1800

370 NBAY=V(1):FOR IZ=1 TO NBAY

380 LINE INPUT #1, AS:CALL SCAN(A$,Vo,NN,B$(),NW):BAYS(IZ)-V(1)

390 NEXT IZ:CLOSE #1

400 REM

410 OPEN "DESOUTPT.DAT" FOR INPUT AS #1

420 LINE INPUT #1, A$:CALL SCAN(AS,Vo,NN,B$(),NW):IF V(1)=0

THEN 1800

430 NPOL-V(1):LINE INPUT #i, A$:CALL SCAN(A$,Vo,NN,B$(),NW)

440 IF V(1)-0 TPEN 1800

450 PSPAC=V(1):CLOSE #1

Support Member Deflections. The top-of-member deflections are cal-
culated in the DESIGN routine and stored in the sequential data file
DEFLECTS.DAT. The DESIGN routine writes two sequential records to
the data file for each support member: the first record contains the deflec-
tion in the length dimension (along the bays), and the second record con-
tains the deflection in the width dimension (along the pole spacings). The
support members are processed sequentially in the DESIGN routine, and
the deflections are written to the DEFLECTS.DAT file as each member is
being analyzed. The data file is OPENed, two records are read for each
support member, and the data are written to the output file. When the

Chapter 9 OUTPUT Routines 127

output is complete, the DEFLECTS.DAT data file is CLOSEd and erased
(KILLed). An example of the support member deflections output is
provided in Appendix C. The source codes for this output are provided
below:

470 REM GEOMETRIC DATA EXTRACTED SUCCESSFULLY - BEGIN OUTPUT

480 REM PRINTER FORM ASSUMED TO BE TOP-OF-PAGE

490 OPEN PL$ FOR APPEND AS #4

500 REM

510 REM TOP OF SUPPORT MEMBER DEFLECTIONS

520 PRINT #4, SPC(50);:PRINT #4, USING " PROJECT: \ \";ESN$

530 PRINT #4, SPC(50);:PRINT #4, USING " REVISION: \\";RV$

535 PRINT #4, SPC(50);:PRINT #4, USING " PROG VER: \ \";PGVER$

540 PRINT #4, SPC(50);:PRINT #4, USING " PROG NUM: ###";DLNUM

545 PRINT #4, " "

550 PRINT #4, SPC(16);

555 PRINT #4, "STRUCTURAL SYSTEM SUPPORT MEMBER DEFLECTIONS-

560 PRINT #4, " "

570 A$-"SUPPORT TOP OF MEMBER DEFLECTION IN THE"

580 PRINT #4, SPC(10);:PRINT #4, AS

590 A$-"MEMBER LENGTH DIMENSION WIDTH DIMENSION"

600 PRINT #4, SPC(11);:PRINT #4. AS

610 AS-"NUMBER (INCHES) (INCHES)"

620 PRINT #4, SPC(11);:PRINT #4, A$

630 AS-" ### ###.###### ###.######"

640 OPEN "DEFLECTS.DAT" FOR INPUT AS #1

650 NLINE-0:CABTOT-0! :GUYTOT-0!

660 IF EOF(1) THEN 700

670 NLINE-NLINE+1

675 LINE INPUT #1,X$:CALL SCAN(X$,Vo,NN,B$(),NW):XDF=V(1)

680 LINE INPUT #1,X$:CALL SCAN(X$,Vo,NN,B$(),NW):YDF-V(1)

690 PRINT #4, USING A$;NLINE,YDF,XDF:GOTO 660

700 PRINT #4, CHR$(12):CLOSE #1:KILL "DEFLECTS.DAT"

Tension Member Data. The tension members are categorized as either
(a) exterior width, (b) exterior length, (c) interior width, (d) interior
length, (e) diagonal, (f) horizontal guy, or (g) vertical guy members. For
each length of tension member used, the following data are provided:

1. FROM node number, origin point of the member,

2. TO node number, termination point of the member,

3. Actual (measured) length of the member section, inches,

4. Unstressed (pull-to) length of the member section, inches, and

5. Category type of the member section.

128 Chapter 9 OUTPUT Routines

The actual or measured length of each tension member is calculated
from the bay spacings (along the structure length) and pole spacings
(along the structure width). The number and value of the bay spacings are
stored in the DESIGN routine sequential input data file DESINPUT.DAT.
The number and value of the pole spacings are stored in the DESIGN
routine sequential output data file named DESOUTPT.DAT. The im-
stressed or pull-to lengths are calculated in the DESIGN routine and are
also written to the DESOUTPT.DAT data file. In addition to the un-
stressed length data, structure node numbers and tension member types
are also written to the DESOUTPT.DAT data file. An example of the file
contents is provided below:

3

80.0000

22175.5977

219.1895

156.6380 1 5 1.00

175.8413 1 6 5.00

92.8664 1 2 3.00

175.8413 2 5 5.00

156.6398 2 6 2.00

175.8413 2 7 5.00

92.8664 2 3 3.00

175.8413 3 6 5.00

156.6398 3 7 2.00

175.8413 3 8 5.00

92.8664 3 4 3.00

175.8413 4 7 5.00

156.6380 4 8 1.00

156.6380 5 9 1.00

175.8413 5 10 5.00

92.8668 5 6 4.00

175.8413 6 9 5.00

156.6398 6 10 2.00

175.8413 6 11 5.00

92.8668 6 7 4.00

175.8413 7 10 5.00

156.6398 7 11 2.00

175.8413 7 12 5.00

92.8668 7 8 4.00

175.8413 8 11 5.00

156.6380 8 12 1.00

92.8664 9 10 3.00

92.8664 10 11 3.00

92.8664 11 12 3.00

169.7070 1 -1000 6.00

The first record (line) contains the number of pole spacings required
for the satisfactory structural design. The second record contains the pole
spacing in inches. From these data, three pole spacings were required at

Chapter 9 OUTPUT Routines 129

80.0 inches per spacing, thus yielding a total structure width of
240.0 inches or 20.0 feet. The third record is the maximum moment
developed at the base of a support member in inch-pounds. The fourth
record is the maximum tension developed in the tension members in
pounds. The remaining records contain the unstressed length, from and to
node numbers and classification of each tension member in the design.
The last record contains the unstressed length of the tension members
used as guys. The actual length of each guy is measured along a 45-de-
gree angle from the top of the support member to the ground surface. The
tension member classifications are as follows (see Chapter 6 DESIGN
Routine):

1. Bay length exterior

2. Bay length interior

3. Pole spacing exterior

4. Pole spacing interior

5. Diagonal

6. Bottom row (vertical) guys

7. Top row (vertical) guys

8. Left-most column (horizontal) guys

9. Right-most column (horizontal) guys

At the conclusion of this output, the sequential data files, DESINPUT.DAT
and DESOUTPT.DAT, are erased (KILLed) from the hard disk. An ex-
ample of the structural system tension member output is provided in Ap-
pendix D. The source codes for this output are provided below:

720 REM STRUCTURE TENSION MEMBER LENGTH AND TYPE OUTPUT

730 GOSUB 760:GOTO 880

740 REM

750 REM HEADINGS FOR TENSION MEMBER OUTPUT

760 PRINT #4, SPC(50);:PRINT #4, USING " PROJECT: \ \";ESN$

770 PRINT #4, SPC(50);:PRINT #4, USING " REVISION: \\";RV$

775 PRINT #4, SPC(50);:PRINT #4, USING " PROG VER: \ \";PGVER$

780 PRINT #4, SPC(50);:PRINT #4, USING " PROG NUM: ###";DLNUM

785 PRINT #4, "

790 PRINT #4, SPC(19);

795 PRINT #4, "STRUCTURAL SYSTEM TENSION MEMBER LENGTHS"

800 PRINT #4, " ":NLINE-0

810 PRINT #4, SPC(17);:PRIUT #4, " MIN DISTANCE UNSTRESSED

LENGTH"

130 Chapter 9 OUTPUT Routines

820 AS-"FROM TO (INCHES) (INCHES) CABLE

TYPE"

830 PRINT #4, SPC(5);:PRINT #4, AS

840 AS-" ### ### #####.## ####

850 RETURN

860 REM

870 REM HORIZONTAL CABLES FIRST

880 FOR IZ-1 TO NBAY+1:NST-(IZ-1)*(NPOL+l)

890 STYPS="WIDTH"

900 CCLAS-4:IF IZ-1 OR IZ=NBAY+1 THEN CCLAS-3

910 FOR JZ1l TO NPOL:NFM=NST+JZ:NTO-NFM+1:ADIST-PSPAC

920 OPEN "DESOUTPT.DAT" FOR INPUT AS #1

930 FOR KZ=1 TO 4:LINE INPUT #1, XS:NEXT KZ

940 IF EOF(1) 12!FN 990

950 LINE INPUT #1, X$:CALL SCAN(X$,Vo,NN,B$(),NW)

960 IF CCLAS<>V(4) THEN 940

970 IF NFM<>V(2) OR NTO<>V(3) THEN 940

980 UDIST=V(1) :CABTOT=CABTOT+UDIST

990 IF CCLAS=3 THEN FTYPS="EXTERIOR"

1000 IF CCLAS-4 THEN FTYPS-"INTERIOR.

1010 CLOSE #1

1015 IF NLINE>50 THEN PRINT #4, CHR$(12):GOSUB 760

1020 PRINT #4, USING A$;NFM,NTO,ADIST,UDIST,FTYP$,STYP$

1030 NLINE=NLINE+1:NEXT JZ:NEXT IZ

1040 REM

1050 REM VERTICAL CABLES NEXT

1060 FOR IZ1l TO NPOL+1:FOR JZ=1 TO NBAY

1070 CCLAS=2:IF IZ=1 OR IZ-NPOL+1 THEN CCLAS=1

1080 STYPS="LENGT'i"

1090 NFM=(JZ-1)*(NPOL+1)+IZ:NTO=NFM+NPOL+1:ADIST=BAYS(JZ)*12

1100 OPEN "DESOUTPT.DAT" FOR INPUT AS #1

1110 FOR KZ-1 TO 4:LINE INPUT #1, X$:NEXT KZ

1120 IF EOF(1 THEN 1170

1130 LINE INPUT #1, X$:CALL SCAN(XS,Vo,NN,B$(),NW)

1140 IF CCLAS<>V(4) THEN 1120

1150 IF NFM<>V(2) OR NTO<>V(3) THEN 1120

1160 UDIST=V(1) :CABTOT-CABTOT+UDIST

1170 IF CCLAS=1 THEN FTYP$="EXTERIOR"

1180 IF CCLAS=2 THEN FTYPS="INTERIOR"

1190 CLOSE #1

1195 IF NLINE>50 THEN PRINT #4, CHR$(12):GOSUB 760

1200 PRINT #4, USING AS;NFM,NTO,ADIST,UDIST,FTYP$,STYP$

1210 NLINE=NLINE+1:NEXT JZ:NEXT IZ

1220 REM

1230 REM DIAGONAL CABLES

1240 FTYP$-"DIAGONAL":STYPS-" ":CCLAS=5

1250 FOR IZ1l TO NPOL:FOR JZ-1 TO NBAY

1260 NST=(JZ-1)* (NPOL+1)+IZ:NFM=NST:NTO-NFM+NPOL+2

1270 ADIST-SQR((BAYS (JZ) *12) ^2+FSPAC^2)

Chapter 9 OUTPUT Routines 131

1280 OPEN "DESOUTPT.DAT" FOR INPUT AS #1

1290 FOR KZ1l TO 4:LINE INPUT #1, X$:NEXT KZ

1300 IF EOF(l) THEN 1350

1-410 LINE TNPUT #1, X$:CALT SCAN(X$,Vo,NN,ki4(),NW)

1320 IF CCLAS<>V(4) THEN 1300

1330 IF NFM<>V(2) OR NTO<>V(3) THEN 1300

1340 UDIST=V(1) :CABTOT=CABTOT+UDIST

1350 CLOSE #1

1360 IF NLINE>50 THEN PRINT #4, CHRS(12):GOSUB 760

1370 PRINT #4, USING AS;NFM,NTO,ADIST,UDIST,FTYPS,STYPS

1380 NLINE=NLINE+1 :NTO=NFM+NPOL+1 :NFM=NFM+1

1390 OPEN "DESOUTPT.DAT" FOR INPUT AS #1

1400 FOR KZ1l TO 4:LINE INPUT #1, X$:NEXT KZ

1410 IF EOF(1) THEN 1460

1420 LINE INPUT #1, X$:CALL SCAN (XS,Vo,NN,BSO),NW)

1430 IF CCLAS<>V(4) THEN 1410

1440 IF NFM<>V(2) OR NTO<>V(3) THEN 1410

1450 UDIST-V(1) :CABTOT=CABTOT+UDIST

1460 CLOSE #1

1470 IF NLINE>50 THEN PRINT #4, CHRS(12):GOSUB 760

1480 PRINT #4, USING A$;NFM,NTO,ADIST,UDIST,FTYP$,STYP$

1490 NLINE-NLINE+1:NEXT JZ:NEXT IZ

1500 REM

1510 REM GUYS

1520 IF GUYS<>"Y" THEN 1810

1530 FTYP$-"HORZ" :STYP$="GUY"

1540 OPEN "DESOUTPT.DAT" FOR INPUT AS #1

1550 FOR KZ-1 TO 4:LINE INPUT #1, X$:NEXT KZ

1560 IF EOF(1) THEN 1800

1570 LINE INPUT #1, X$

1575 CALL SCAN(X$,Vo,NN,B$(),NW):IF V(4)<>6! THEN 1560

1580 UDIST-V(1) :ADIST=SOR(2*HTPOL^2)

1590 FOR IZ1l TO NBAY+1:NFM=CIZ-1)*(NPOL+1)41:NTO=NFM

1600 IF NLINE>50 THEN PRINT #4, CHR$(12):GOSUB 760

1610 PRINT #4, USING AS;NFM,NTO,ADIST,UDIST,FTYPS,STYPS

1620 GUYTOT=GUYTOT+UDIST

1630 NLINE=NLINE+1:NEXT IZ

1640 FTYPS-"VERT"

1650 FOR IZ-1 TO NPOL+1:NFM-IZ:NTO=NFM

1660 IF NLINE>50 THEN PRINT #4, CHRS(12):GOSUB 760

1670 PRINT #4, USING A$;NFM,NTO,ADIST,UDIST,FTYP$,STYP$

1680 GUYTOT-GUYTOT+UDIST

1690 NLINE-NLINE+1:NEXT IZ

1700 FTYP$-"HORZ":FOR IZ-1 TO NBAY+1:NFM=(IZ-1)*(NPOL+1)+NPOL+1

1710 NTO=NFM:IF NLINE>50 THEN PRINT #4, CHR$(12):GOSUB 760

1720 PRINT #4, USING A$;NFN,NTO,ADIST,UDIST,FTYP$,STYP$

1730 GUYTOT=GUYTOT+UDIST

1740 NLINE-NLINE+1:NEXT IZ

1750 FTYPS="VERT" :NST=NBAY* (NPOL+1)

1755 FOR IZ=1 TO NPOL+1:NFM=NST+IZ

132 Chapter 9 OUTPUT Routines

1760 NTO=NFM:IF NLINE>50 THEN PRINT #4, CHR$(12):GOSUB 760

1770 PRINT #4, USING A$;NFM,NTO,ADIST,UDIST,FTYP$,STYP$

1780 GUYTOT=GUYTOT+UDIST

1790 NLINE=NLINE+I:NEXT IZ

1800 CLOSE #1

1810 KILL "DESOUTPT.DAT":KILL "DESINPUT.DAT"

1820 PRINT #4, CHRS(12)

Foundation/Footing Design. The results of the foundation/footing
design are written to the FOOTING.DAT sequential data file (see Chap-
ter 7 FOOTING Routine). The FOOTING.DAT data file is simply
OPENed, and its contents are printed to the output .PRT data file. When
the data transfer is completed, the FOOTING.DAT data file is erased
(KILLed). An example of the foundation/footing design output is
provided in Appendix D. The source codes for the foundation/footing
design output are provided below:

1840 REM FOUNDATION/FOOTING OUTPUT (FOOTING.DAT)"

1850 PRINT #4, SPC(50);:PRINT #4, USING " PRCJECT: \ \";ESN$

1860 PRINT #4, SPC(50);:PRINT #4, USING " REVISION: \V';RV$

1865 PRINT #4, SPC(50);:PRINT #4, USING " PROG VER: \ \";PGVER$

1870 PRINT #4, SPC(50);:PRINT #4, USING " PROG NUM: ###";DLNUM

1875 PRINT #4, " ":PRINT #4, "..

1880 PRINT #4, SPC(23);:PRINT #4, "FOUNDATION/FOOTING SYSTEM

DESIGN"

1890 PRINT #4,

1900 OPEN "FOOTING.DAT" FOR INPUT AS #1

1910 IF EOF(1) THEN 2010

1920 LINE INPUT #1, A$:PRINT #4, A$

1930 IF LEN(A$)<=6 THEN 1910

1940 FOR IZ=1 TO LEN(A$)-6

1950 IF MID$(A$,IZ,6)="LENGTH" THEN

1960 CALL SCAN(A$,Vo,NN,B$(),NW):DEPTH=V(1)

1970 GOTO 1910

1980 ENDIF

1990 NEXT IZ

2000 GOTO 1910

2010 CLOSE #1:KILL "FOOTING.DAT"

2020 PRINT #4, " ":PRINT #4, " ":PRINT #4,

Anchor Design. The results of the anchor design are written to the
ANCHOR.DAT sequential data file (see Chapter 8 ANCDES Routine).
The ANCHOR.DAT data file is OPENed and its contents are printed to the
output .PRT data file. When the data transfer is completed, the
ANCHOR.DAT data file is erased (KILLed). An example of the anchor
design output is provided in Appendix D. The source codes for the anchor
design output are provided below:

2040 REM ANCHOR DESIGNS

2050 IF GUY$="Y" OR GUY$="y" THEN

Chapter 9 OUTPUT Routines 133

2060 PRINT #4, SPC(23);

2065 PRINT #4, "SELECTED ANCHORING SYSTEM DESIGN"

2070 PRINT #4, "..

2080 OPEN "ANCHOR.DAT" FOR INPUT AS #1

2090 IF EOF(1) TiLN 2110

2100 LINE INPUT #1, A$:PRINT #4, A$:GOTO 2090

2110 CLOSE #1:KILL "ANCHOR.DAT"

2120 PRINT #4, ' ":PRINT #4, " ":PRINT #4,

2130 ENDIF

Materials Summary. The final output form consists of a summary of
each structural material required by the designs. The support member
data, netting data, tension member data for support members and guy
members, and anchor data are provided in a short summary table. For
each data item listed, the quantity, name, use code, description, unit cost,
and total cost are provided. An example of the structural material sum-
mary is provided in Appendix D. The source codes for the material sum-
mary output are provided below:

2150 REM FINAL STRUCTURAL MATERIALS SUMMARY

2160 PRINT #4, SPC(24);:PRINT #4, "STRUCTURAL MATERIALS SUMMARY"

2170 PRINT #4, - "

2180 A$="QUANTITY MARK USE DESCRIPTION

2185 A$=A$+"UNIT COST TOTAL COST"

2190 PRINT #4, SPC(6);:PRINT #4, A$

2200 B$=" ####. \ \ \\ \ \ #####.##

2210 AS=" "+B$

2220 REM

2230 REM SUPPORT MEMBERS

2240 TOTPOL=HTPOL+DEPTH:NPOLE=(NBAY+1)*(NPOL+1)

2250 NCUT=1:IF TOTPOL=POLEN THEN NCUT=0

2260 IF TOTPOL<POLEN/2 THEN

2270 NCUT=2:NPOLE=NPOLE/2

2280 IF TOTPOL*2=POLEN THEN NCUT=1

2290 ENDIF

2300 MRK$=MID$(POLMK$,1,5) :US$=MID$(POLMK$,6,1)

2310 CTOT=NPOLE*POLEN*PCOST

2320 PRINT #4, USING A$;NPOLE,MRK$,US$,POLDS$,PCOST,CTOT

2330 REM

2340 REM NETTING

2350 REM ASSUME OVERLAP OF HTPOL/2 ON ALL FOUR SIDES

2360 REM ASSUME FIVE (5.0) PERCENT OVERLAP BETWEEN NETS

2370 TOTL=0!:FOR IZ=1 TO NBAY:TOTL=TOTL+BAYS(IZ):NEXT IZ

2380 TOTW=NPOL*PSPAC/12!

2390 TAREA=(TOTL+HTPOL)*(TOTW+HTPOL)

2400 NAREA=NSIZE*.8:NNET=INT(TAREA/NAREA)+1!

2410 MRK$=MID$(NETMK$,1,5) :US$=MID$(NETMK$,6,1)

2420 CTOT=NNET*NSIZE*NCOST

2430 PRINT #4, USING A$;NNET,MRK$,US$,NETDS$,NCOST,CTOT

134 Chapter 9 OUTPUT Routines

2440 REM

2450 REM TENSION MEMBERS (STRUCTURE CABLES FIRST - GUYS SECOND)

2460 CABTOT-INT(CABTOT)+1!

2465 IF GUYTOT>0 THEN GUYTOT=INT(GUYTOT)+1!

2470 MRK$=MID$(CABMK$,1,5) :US$=MID$(CABMK$,6,1)

2480 CTOT=CABTOT*CCOST

2490 PRINT #4, USING A$;CABTOT,MRK$,US$,CABDS$,CCOST,CTOT

2500 IF GUY$="Y" OR GUY$="y" THEN

2510 CTOT=GUYTOT*CCOST

2520 PRINT #4, USING AS;GUYTOT,MRK$,US$,CABDS$,CCOST,CTOT

2530 ENDIF

2540 REM

2550 REM ANCHORS FOR GUYED SYSTEM

2560 IF GUY$="Y" OR GUY$="y" THEN

2570 NANCH=(NBAY+1)*2+(NPOL+1)*2

2580 FOR IZ=1 TO NANC

2585 MRK$=MID$(ANCMK$(IZ),1,5):US$=MID$(ANCMK$(IZ),6,1)

2590 CTOT=ACOST (IZ) *NANCH

2600 PRINT #4, USING A$;NANCH,MRK$,US$,A!'CDS$(IZ),

ACOST(IZ),CTOT

2610 NEXT IZ

2620 ENDIF

2630 REM

2640 REM NOTES OF ASSUMPTIONS FOR MATERIAL SUMMARY

2650 PRINT #4, " ":PRINT #4, "..

2660 A$-"NOTE: ## CUT(S) REQUIRED ON EACH SUPPORT MEMBER"

2670 PRINT #4, SPC(10);:PRINT #4, USING A$;NCUT

2680 A$="NETTING OVERHANG IS ONE-HALF STRUCTURE HEIGHT"

2685 A$=AS+" ON ALL SIDES"

2690 PRINT #4, SPC(22);:PRINT #4, AS

2700 A$=" NETTING OVERLAP IS 5.0 PERCENT ON ALL SIDES"

2710 PRINT #4, SPC(10);:PRINT #4, AS

2720 PRINT #4, CHR$(12)

2730 CLOSE

2740 END SUB

Final Output Display. When all of the output forms have been
generated, the sequential output .PRT data file will be displayed by the
UTILITY routine. The UTILITY routine allows the data file to be:
(1) browsed (reviewed) on the screen, (2) printed to the printer, (3) copied
to a floppy disk (assumed to reside in the A disk drive), or (4) erased from
the resident (hard) disk drive when the UTILITY routine is terminated. If
the .PRT data file is not erased at the termination of the UTILITY routine,
it will remain on the resident (hard) disk drive. This is the last phase of
the program output. When this phase is concluded, the project data file
and the DESIGN.DAT data files residing on the hard disk are erased
(KILLed), and program control is returned to the original program
prompt. The source codes for these final program operations are provided
below:

Chapter 9 OUTPUT Routines 135

3760 REM PROGRAM OUTPUT TO DISK FILE

3770 CALL DROUTPUT(ESN$,RV$,DD$,DLNUM, PGVER$)

3780 PL$=LEFT$(FL$,LEN(FL$)-3)+"PRT"

3790 A$="UTILITY "+PL$:SHELL A$

3800 KILL "DESIGN.DAT":KILL FL$

3810 GOTO 370

136 Chapter 9 OUTPUT Routines

10 Program Compilation and
Linking

The Camouflage Program contains a series of stand-alone executable
program modules which allow the description and analysis of a camou-
flage structure. All of the program modules except two are written in
BASIC, the two exceptions being the structural design routine (DESIGN)
and the plan view graphics routine (DRAW) which are written in
FORTRAN. The purpose of this chapter is to describe each executable
program as to the compilation and linking procedures required to create
that program module. The executable programs described are as follows:
(1) MAIN (Camouflage), (2) VALID, (3) DEVICE, (4) UTILITY,
(5) CAMOBLDR, (6) EDITPRIC, (7) DESIGN, and (8) DRAW.

MAIN Program. The Camouflage Program executable program
module is named MAIN.EXE. The MAIN.EXE executable program con-
sists of four program modules: MAIN, CAMINP, CAMOSCRN, and
DROUTPUT. In addition, a library of general usage routines are stored in
the program module INPUTROU. Each of these five modules is written
in BASIC (Microsoft 1989A and B). The five routines are compiled using
the Microsoft PRO-Basic Compiler (version 7.1). The library module
GENERAL.LIB is created using the Quick Library option of the PRO-
Basic Linker (version 5.10) and the PRO-Basic Library Manager (ver-
sion 3.17). The final executable program MAIN.EXE is created by
linking the object (OBJ) codes for the MAIN routine with the object codes
for the three subprogram modules and the GENERAL.LIB library codes.
The program linking is accomplished with the PRO-Basic Linker. The
PRO-Basic compiler/linker/library commands required to produce the
GENERAL.LIB library module are provided below:

ERASE GENERAL.*

BC INPUTROU.BAS IFs;

LINK /Q INPUTROU,GENERAL.QLB, NUL,QBXQLB.LIB;

LIB GENERAL.LIB+INPUTROU;

ERASE INPUTROU.OBJ

ERASE *.QLB

Chapter 10 Program Compilation and Linking 137

The Far strings (Fs) compiler option is used to conserve string space in
the main program module. This option provides string storage outside the
DGROUP allowing more available storage for program variables, etc., in
the DGROUP. The ERASE commands are MS-DOS (Microsoft 1989A
and B) system commands which are used to erase the object (OBJ)
modules when the linking process is completed. These commands are
used to conserve the available space on the hard disk of the computer sys-
tem. The PRO-Basic compiler/linker commands required to produce the
MAIN.EXE executable module are provided below:

BC MAIN.BAS /X/D/O/Fs;

BC CAMINP.BAS /D/O/Fs;

BC CAMOSCRN.BAS /D/O/Fs;

BC DROUTPUT.BAS /O/D/X/Fs;

LINK /EX /NOE MAIN+ (CAMINP+CAMOSCRN) + (DROUTPUT),,,GENERAL;

ERASE MAIN.OBJ

ERASE CAMINP.OBJ

ERASE CAMOSCRN.OBJ

ERASE DROUTPUT.OBJ

ERASE *.MAP

The compiler options used are for error checking and resume
recoveries (X), debug (D, allows for <CTRL BREAK> interrupts), stand-
alone libraries (0), and far strings (Fs). The linker options used are for
packing executables (EX) and ignoring extending dictionaries (NOE).
The use of these two options results in smaller executable modules.
During the linker process, the input/edit program function modules,
CAMINP and CAMOSCRN, are overlaid with the output program func-
tion module, DROUTPUT. This overlaid program executable results in a
smaller memory (RAM) requirement for program operation. The ERASE
commands are used to erase the object modules and the mapping module
from the hard disk when the linking process is completed.

VALID Program. The VALID program is a single program module
which is linked to the program libraries module GENERAL. The com-
piler options used are for error checking only (E), far strings, floating
point operations (FPi), stand-alone libraries, and debug. The PRO-Basic
compiler/linker commands required to produce the VALID.EXE ex-
ecutable module are provided below:

BC VALID.BAS /E/FS/FPi/O/D;

LINK /EX /NOE VALID,,, GENERAL;

ERASE VALID.OBJ

DEVICE Program. The DEVICE program is a single program module
which is linked to the program libraries module GENERAL. The com-
piler options used are for error checking only (E), far strings, floating
point operations (FPi), stand-alone libraries, and debug. The PRO-Basic
compiler/linker commands required to produce the DEVICE.EXE ex-
ecutable module are provided below:

138 Chapter 10 Program Compilation and Unking

BC DEVICE.BAS /E/FS/FPi/O/D;

LINK /EX /NOE DEVICE,,,GENERAL;

ERASE DEVICE.OBJ

UTILITY Program. The UTILITY program is a single program
module written by Mr. Chong Lin for Gulf States Manufacturers, Inc., of
Starkville, MS. The program module was written in BASIC and compiled
using the Microsoft Quick-BASIC compiler (version 4.5). Source codes
are unavailable for this program module.

CAMOBLDR Program. The CAMOBLDR program is a stand-alone
program module that is totally self-contained. The compiler options used
are stand-alone library (0) and far string storage (Fs). The Pro-Basic
compiler/linker commands required to produce the CAMOBLDR.EXE
executable module are provided below:

BC CAMOBLDR.BAS /O/Fs;

LINK /EX /NOE CAMOBLDR;

ERASE CAMOBLDR.OBJ

EDITPRIC Program. The EDITPRIC program is a single program
module which is linked to the program libraries module GENERAL. The
compiler options used are far strings, stand-alone libraries, and debug.
The PRO-Basic compiler/linker commands required to produce the
EDITPRIC.EXE executable module are provided below:

BC EDITPRIC.BAS /Fs/O/D;

LINK /EX /NOE EDITPRICEDITPRIC,,GENERAL;

ERASE EDITPRIC.OBJ

ERASE *.MAP

DESIGN Program. The DESIGN program is a single program module
written in FORTRAN (Ryan-McFarland 1987). The program executable is
created using the RM FORTRAN compiler and linker (version 2.4). The
main routine and 24 subroutines are in a single module. The compilation
and linking are performed within the RMFORTRAN environment. The
RMFORTRAN linker commands required to produce the DESIGN.EXE
executable module are provided below:

OUTPUT DESIGN.EXE

MAP- DESIGN.MAP

FILE DESIGN.OBJ

DRAW Program. The DRAW program consists of a main routine
(DRAW) and four subroutines (BORDER, CIRCLE, DIMLIN, and
FOOTS). Each of the routines is written in FORTRAN. The program
executable is created using the RM FORTRAN compiler and linker (ver-
sion 2.4). The graphics used are PLOT88 utilities (Plotworks 1989) which
are linked with the plot driver utilities as library routines. In addition, the
PLOT88 routines, HPNULL, HINULL, and PSNULL, are linked to

Chapter 10 Program Compilation and Linking 139

move the drivers for plotter devices. The compilations and linking are per-
formed within the RMFORTRAN environment. The RMFORTRAN linker
commands required to produce the DRAW.EXE executable module are
provided below:

OUTPUT DRAW.EXE

LIBRARY PLOT88,DRIVE88

MAP= DRAW.MAP

FILE HPNULL.OBJ

FILE HINULL.OBJ

FILE PSNULL.OBJ

FILE MAIN.OBJ

FILE BORDER.OBJ

FILE CIRCLE.OBJ

FILE DIMLIN.OBJ

FILE FOOTS.OBJ

References.

Microsoft. (1989A). Microsoft BASIC: programmer's guide (version
7.1), Microsoft Corporation, Redmond, WA.

(1989B). Microsoft BASIC: BASIC language reference (ver-
sion 7.1), Microsoft Corporation, Redmond, WA.

Ryan-McFarland. (1987). RM/FORTRAN (version 2.4), Ryan-McFarland
Corporation, Austin, TX.

Plotworks. (1989). PLOT88: Software library and reference manual,
Plotworks, Incorporated, Ramona, CA.

140 Chapter 10 Program Compilation and Linking

Appendix A
Program Users Guide

The Camouflage Program is a collection of routines which are intended
to allow the input of a structure description and desired materials, the
modification of the data for an existing project, or execute an existing
project. The contents of this appendix provide the instructions to install
the Camouflage Program on any computer system and prepare that com-
puter system for the execution of the Camouflage Program.

Program Installation. All of the necessary program modules and data
files required for execution of the Camouflage Program are contained on
DISK 1. A subdirectory should be created (MAKEd) on the hard disk of
the computer system, and the contents of DISK I COPYed from the floppy
disk to that subdirectory. A form of the system commands that will 'c-
complish these tasks are provided below:

MD \subdirname creates subdirectory

CD \subdirname changes to that subdirectory

COPY A:*.* copies contents floppy to hard disk

Two stand-alone programs must be executed before the Camouflage
Program can be executed. These two programs are executed only one
time to define the existing computer system components for the
Camouflage Program. The two programs are VALID and DEVICE (see
Chapter 3 Utility Routines). If the computer system configuration is
changed, or new components are added, these two programs should be ex-
ecuted again. The execution of these two programs will create two data
files, COMFIL and DEVICES, on the resident (hard) disk whose contents
are required for the Camouflage Program operation.

VALID Program. The VALID program is executed by typing the
following:

VALID <ENTER>

at the system level. An input screen with five data fields will be dis-
played, as follows:

Appendix A Program Users Guide Al

U. S. Army Corps of Engineers

Waterways Experiment Station

Vicksburg, MS 39180

Camouflage Design Program Validation

PROGRAM RENEWAL DATE 12/31/1992

USER NAME

PROGRAM REGISTRATION NUMBER

SCRATCH DISK DRIVE

PROGRAM VERSION NUMBER 1.01

Press <ESC> when input is complete . . .

The first data field (PROGRAM RENEWAL DATE) will be high-
lighted. Movement to any of the other data fields is accomplished by the
carriage return (<ENTER>) key, the directional arrow keys, the home
(<HOME>) key, the end (<END>) key, the page up (<PGUI) key or the
page down (<PGDN>) key. When the input has been completed, the es-
cape (<ESC>) key is used to exit the screen. The program will check
the input data, and if they are satisfactory, the random access data file
COMFIL is written, and the program is terminated. Each of the five data
fields are described, and if any program restrictions exist for the data
field, those restrictions are discussed as well.

PROGRAM RENEWAL DATE. The program renewal date is defaulted
to 12/31/1992 by the program. The current version of the Camouflage Pro-
gram does not use this data item; therefore, it need not be changed. If it is
changed however, the format of a two digit month followed by a slash (/),
two-digit day followed by a slash, and a four-digit year must be used. The
program will reject any other format.

USER NAME. A user name of up to 25 characters may be provided.
This data item is not checked by the program, and any combination of
characters may be used. The current version of the Camouflage Program
does not use this data item.

PROGRAM REGISTRATION NUMBER. Any number may be input.
This data item is displayed on each page of program output and may be
us-d to identify the computer which generated the output. The program
checks to ensure that this number is between 1 and 99999. If the
Camouflage Program resides on a single computer system, the input
should be 1.

SCRATCH DISK DRIVE. This data item must be specified. Any
legitimate disk drive specification may be provided. A floppy disk drive

A2 Appendix A Program Users Guide

should not be specified. If the computer system has a RAM drive avail-
able (D or E, for example), it would be advisable to use this disk drive be-
cause of its speed. If a RAM drive is specified, the system
AUTOEXEC.BAT file should be modified to copy the Camouflage Pro-
gram pricing uata file (PRICE.LAT) and the three addressing data files
(DATA.ADD, DATA.LOC, and DATA.FLD) from the hard drive to the
RAM drive. The Camouflage Program will not transfer these data files,
and assumes that they reside on the specified disk drive. If a subsequent
execution of the Camouflage Program results in either an "File not found"
error (System Erroi # 53) or an "Illegal function call" error (System Error
5), one (or all) of these four data files is not resident on the assumed
disk drive. These files may be copied to the designated disk drive with
the COPY command, as follows:

COPY C:\CAMFLAGE\PRICE.LAT D:

COPY C:\CAMFLAGE\DATA.* D:

PROGRAM VERSION NUMBER. This data item is the number of the
current version of the Camouflage Program. This data item may not be
changed, and will be displayed on each page of program output.

When the data input are completed, the <ESC> key is used to terminate
the input and initiate the data checking phase of the program. If any in-
consistencies are detected, an appropriate message is displayed and con-
trol is returned to the input. When the data are assumed to be acceptable,
the random access data file COMFIL is written and the program is ter-
minated. No other executions of the VALID program are required by the
Camouflage Program. The source codes for the VALID program are
provided in Chapter 3 Utility Routines.

DEVICE Program. The DEVICE program is executed by typing the
following:

DEVICE <ENTER>

at the system level. Two input screens are displayed which allow the
computer system monitor, printer and desired printer page size to be
defined. The first input screen contains a list of available monitor types,
as follows:

Appendix A Program Users Guide A3

U. S. ARMY CORPS OF ENGINEERS

CAMOUFLAGE DESIGN OUTPUT DEVICES

DISPLAY ADAPTER (Y/N)

TEXT MONITOR ONLY Y

HERCULES MONO (720 BY 348) N

CGA (2 COLOR 640 BY 200) N

EGA (16 COLOR 320 BY 200) N

EGA (2 COLOR 640 BY 200) N

EGA (16 COLOR 640 BY 200) N

EGA (MONOCHRM 640 BY 350) N

EGA (16 COLOR 320 BY 200) N

EGA (16 COLOR 640 BY 350) N

VGA (2 COLOR 640 BY 480) N

VGA (16 COLOR 640 BY 480) N

VGA (256 COLOR 320 BY 200) N

Press <ESC> when input is complete . .

The first data field (TEXT MONITOR ONLY) will be highlighted. If
another type of display adapter is being used, the Y for the TEXT
MONITOR ONLY should be changed to an N and the highlighted field
moved to the desired display adapter. The display adapter description
which describes the monitor for the computer system should be indicated
with a Y (y). This input may be terminated by the <ESC> key. When the
<ESC> key is depressed, the indicated display adapter data field will flash
for verification. If the flashing indicator is not the desired display, that
data field should be changed to N and the desired data field changed to Y.
When the desired display adapter data field is flashing, a second <ESC>
keystroke will cause the screen to be cleared and the second input screen
to be displayed, as follows:

A4 Appendix A Program Users Guide

U. S. ARMY CORPS OF ENGINEERS

CAMOUFLAGE DESIGN OUTPUT DEVICES

PRINTING DEVICE (YIN) PAGE SIZE (Y/N)

NO PRINTER Y 8.5 BY 11.0 (A) Y

EPSON (MXRX-80) N 11.0 BY 14.0 (AA) N

EPSON (FX,JX-80) N 11.0 BY 17.0 (B) N

EPSON (FX-85) N 17.0 BY 22.0 (C) N

EPSON (FX-185,286) N 22.0 BY 34.0 (D) N

EPSON (FX-100) N

EPSON (MX,RX-100) N

EPSON (LQ-1500) N

IBM (PRPRNTR/GRPHCS) N

CENTRONICS N

OKIDATA (92,182,192) N

OKIDATA (93,193) N

HP THINKJET N

HP QUIETJET N

HP QUIETJET PLUS N

HP LASERJET N

Press <ESC> to complete input or <Fl> for previous screen ...

The first data field (NO PRINTER) will be highlighted. If another type
of printer device is being used, the Y for the NO PRINTER should be
changed to an N and the highlighted field moved to the desired printer
device. The printer device description which describes the printer for the
computer system should be indicated with a Y (y). The printer page size
is specified similarly. If an 8.5- by 11.0-in. size is desired, no changes are
required. If an 11.0- by 14.0-in. (wide carriage) page size is desired, the
highlighted field should be moved to that data field and a Y provided (8.5
by 11.0 must be changed to N). When the <ESC> key is depressed, the in-
dicated printer device and page size data fields will flash for verification.
If the flashing indicators are not the desired device or page size, the data
field(s) should be changed to N and the desired data field changed to Y.
When the desired printer device and page size data fields are flashing, a
second <ESC> keystroke will cause the screen to be cleared. When the
data are assumed to be acceptable, the sequential data file DEVICES is
written and the program is terminated. No other executions of the
DEVICE program are required by the Camouflage Program. The source
codes for the DEVICE program are provided in Chapter 3 Utility Routines.

Camouflage Program Execution. The Camouflage Program is ex-
ecuted by typing the following:

MAIN <ENTER>

at the system level. A title screen will be displayed followed by the pro-
gram options input, as follows:

Appendix A Program Users Guide A5

Waterways Experiment Station

Environmental Engineering Division

Vicksburg, MS 39180

CAMOUFLAGE STRUCTURAL DESIGN

Program version dtd: May 15, 1991

OPTIONS: INPUT, EDIT, EXECUTE OR END (IN/ED/EX/END)?

Three program options are involved with any camouflage system.
These program options provided are as follows:

(1) INPUT the data required to describe the soil conditions, system
geometry, and desired materials for the project,

(2) EDIT the data for a project which has been previously defined,
and

(3) EXECUTE the analysis and output the results for a project
which has been previously defined.

The desired program option is indicated with a two-character keyword:
IN, ED, EX, or EN (in, ed, ex, or en). If any other response is provided,
an appropriate message is displayed and the input is corrected. If the pro-
gram is not terminated (ENd), the next inputs required are the name and
revision number of the project, as follows:

PROJECT NAME (SIX CHARACTER MAX) ?

REVISION NUMBER (0 - 9) ?

The project name can be any combination of letters and/or numbers up
to six characters in length. If the project name is less than six characters
long, the trailing blanks are filled with zeros. The revision number must
be a numeric from zero to nine (0, 1, 2, 3, 4, 5, 6, 7, 8, or 9). The project
name and revision number will be displayed on each page of program out-
put, and is used to define the name of the project data file in which the
data are stored (see Chapter 1 MAIN Program).

INput Program Option. The INput program option allows for the com-
plete description of a project which has not been previously defined. If
the input project name and revision number define an existing project data
file, the program option is changed to EDit and the program operations are
continued. This is done to avoid the potential disaster of overwriting the
data for an existing project. Ten input screens will be displayed sequen-
tially during the input process (see Chapter 5 CAMINP Routine). The
input to any of the screens is terminated with either an <ESC> key or a
<Fl> key. Terminating with an <ESC> key will cause the next sequential
input screen to be displayed, and terminating with a <Fl> key will cause
the previous input screen to be displayed. The use of these two terminating

A6 Appendix A Program Users Guide

keys allows the user to move backwards through the screens (<Fl>) and
review the input to ensure that inconsistencies in the data do not occur.
When an input screen is terminated with an <ESC>, limited checks on the
data are made to ensure that the data are reasonable. If inconsistencies
are detected, an appropriate message is displayed, and the user is required
to correct the input before continuing to the next screen, Terminating an
input screen with <FI> provides no such data checks. Each of the input
screens is provided with a description of the data fields and data checks
that are made. As each input screen is displayed, the first data field will
be highlighted. Movement of the highlighted field is accomplished with
the following keys (see CURSOR Routine in Chapter 3 Utility Routines):
(a) <ENTER> key, (b) arrow keys, (c) <Home> key, (d) <End> key, (e)
<Page Up> key, or (f) <Page Down> key. All other keys (except <ESC>
and <Fl> keys) are accepted as input or ignored.

The initial screen is the general site description input screen as follows:

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Site Specific Data REVISION # 0

SOILS INVESTIGATION and FOUNDATION DATA

cohesion (psf): 400.

unit weight (pcf): 120.

angle of internal friction (degrees): 25.0

diameter of boring for pole socket (inches): 12.0

CLIMATE DATA

average daily rainfall (inches): 0.10

average daily temperature (degs F): 50.0

wind speeds (mph): 10.0

sustained average (mph):

gust speeds (mph):

potential ice or snow load (psf): 2.0

GENERAL TERRAIN AND FOLIAGE CLASSIFICATION:

There are 11 data items shown on the Site Specific Data input screen.
If any data item has a program default value, that value is also displayed.
If no program default value exists for a data item, the data field is blank.
The program default values are provided on the input screen shown, and
are also listed in Chapter 5 CAMINP Routine. These values may be
changed by the user. When the <ESC> key is depressed, the input values
for ihe soil cohesion, soil unit weight, and soil angle of internal friction
are checked to ensure that reasonable values are provided. No other data
items are checked.

The next input screens involves the description of the structure
geometry, as follows:

Appendix A Program Users Guide A7

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Structure Geometry REVISION # 0

PLAN VIEW DATA

length of structure (feet):

bay spacings (measured along the structure length)

width of structure (feet):

minimum pole spacing (feet): 10.0

ELEVATION DATA

exterior pole height (above ground feet): 20.0

exterior poles guyed (Y/N): Y

allowable netting sag (feet): 2.0

allowable displacement error (inches): 0.10

There are 27 data items shown on the Structure Geometry input screen.
If any data item has a program default value, that value is also displayed.
If no program default value exists for a data item, the data field is blank.
The program default values are provided on the input screen shown, and
are also listed in Chapter 5 CAMINP Routine. These values may be
changed by the user. When the <ESC> key is depressed, the input values
for the structure length, structure width, minimum support spacing along
the width, support height, maximum sag in the tension members, and maxi-
mum displacement error are checked to ensure that none were left blank.
In addition, the specified bay spacings are checked to ensure that the sum
of the bay spacings is equal to the structure length.

The remaining eight input screens provide for a description of the struc-
tural materials (support members, netting, tension members, and anchors)
to be used for the project. Each structural material item provides two
screens on which up to 30 material items may be provided. Minimum
input required for each structural material is the complete definition of
each data item listed for one (1) material item. The first material input
screen(s) provide for the description of the desired support member(s), as
follows:

A8 Appendix A Program Users Guide

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Support Member Material Screen REVISION # 0

INDICATE DESIRED SUPPORT MEMBER TO BE USED (Y-Yes N-No)

ALLOW MODULUS X-SECTION MOMENT UNIT

LENGTH STRENGTH ELASTIC AREA INERTIA PRICE

MARK (FT) (KSI) (10"*6) (SQIN) (IN**4) ($/FT) DESCRIPTION

N A0202P 20 30 10 1.75 .911 0 2 X 2 ALUMINUM

N A0303P 20 30 10 2.75 3.49 0 3 X 3 ALUMINUM

N A0404P 20 50 29.0 6.36 12.35 0.80 4 X 4 ALUMINUM

N W0404P 20 7 1.7 16 85 0 4 X 4 WOODEN PO

Nine data fields are provided for each support member. Before this
input screen is displayed, the project pricing data file (PRICE.LAT) will
be searched for up to 30 data items having a use code of P (see Chapter 5
CAMINP Routine and Chapter 4 Pricing Data). Each material item ex-
tracted (maximum of 15 per screen) will be displayed with its chf.rac-
teristics as shown. If the material characteristics for a particular item are
not defined in the PRICE.LAT data file, values of 0 will be displayed. If
no material items with a use code of P are found, the screen will be blank.
Only one support member may be selected. One material item must be
provided and completely described as to the characteristics shown before
an <ESC> key will be accepted. Only the data for the selected material
item are checked. The first data field for each material item is a Y or N to
indicate whether the material is to be used or not. The MARK of the mate-
rial item is the five-character name of the material and the one-character
use code. The name and the 15-character description of the selected
material will be displayed in the material summary output. The remaining
six data items must be specified (non-zero and non-blank) before execu-
tion is allowed to continue. If more than 15 material items are provided,
the user may <ESC> to the second support member input screen and <Fl>
back to the first support member input screen to ensure that the correct
member has been selected. An <ESC> on the second support member
input screen initiates the data checks.

The second material input screens involve the desired netting, as
follows:

Appendix A Program Users Guide A9

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Netting Material Screen REVISION # 0

INDICATE DESIRED NETTING TYPE TO BE USED (Y-Yes N-No)

UNIT NETTING ALLOW UNIT DRAG UNIT

SIZE THICK STRENGTH WEIGHT COEFFIC PRICE

MARK (SQFT) (IN) (KSI) (#/SQFT) (UNITS) ($/SQFT) DESCRIPTION

N BF016N 0 0 0 0 0 0 BRUNSWICK 16-LB

N BF022N 0 0 0 0 0 0 BRUNSWICK 22-LB

N SF050N 400.0 0.085 5.0 0.083 .005 0.15 STANDARD DOD50

N TB035N 0 0 0 0 0 0 TELEDYNE BROWN

N UL060N 0 n 0 0 0 0 ULCAN 60-LBNET

Nine data fields are provided for each net. Before this input screen is
displayed, the project pricing data file (PRICE.LAT) will be searched for
up to 30 data items having a use code of N (see Chapter 5 CAMINP
Routine and Chapter 4 Pricing Data). Each material item extracted (maxi-
mum of 15 per screen) will be displayed with its characteristics as shown.
If the material characteristics for a particular item are not defined in the
PRICE.LAT data file, values of 0 will be displayed. If no material items
with a use code of N are found, the screen will be blank. Only one net-
ting material may be selected. One material item must be provided and
completely described as to the characteristics shown before an <ESC> key
will be accepted. Only the data for the selected material item are checked.
The first data field for each material item is a Y or N to indicate whether
the material is to be used or not. The MARK of the material item is the
five-character name of the material and the one-character use code. The
name and the 15-character description of the selected material will be dis-
played in the material summary output. The remaining six data items
must be specified (non-zero and non-blank) before execution is allowed to
continue. If more than 15 material items are provided, the user may
<ESC> to the second netting input screen and <Fl> back to the first net-
ting input screen to ensure that the correct item has been selected. An
<ESC> on the second netting input screen initiates the data checks.

The third material input screens involve the desired tension member, as
follows:

A10 Appendix A Program Users Guide

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Tension Member Material Screen REVISION # 0

INDICATE DESIRED TENSION MEMBER TO BE USED (Y-Yes N-No)

ALLOW MODULUS THERMAL X-SECTION UNIT UNIT

STRENGTH ELASTIC COEFFIC AREA WEIGHT PRICE

MARK (KIPS) (10**6) (10**-6) (SQIN) (#/FT) ($/FT) DESCRIPTION

N GR416C 0 0 0 0 0 0 1/4 INCH GRASS

N GS216C 16.0 29.0 6.5 .012 0.40 0 1/8 IN AIRCRAFT

N GS316C 17.5 29.0 6.5 .785 0.45 0.70 3/16 IN AIRCRAF

N GS416C 20.0 0 0 0 0 0 1/4 IN AIRCRAFT

N GS516C 22.0 0 0 0 0 0 5/16 IN AIRCRAF

N GS616C 0 0 0 0 0 0 3/8 IN AIRCRAFT

N GS816C 0 0 0 0 0 0 1/2 IN AIRCRAFT

N NL416C 0 0 0 0 0 0 1/4 INCH NYLON

Nine data fields are provided for each tension member. Before this
input screen is displayed, the project pricing data file (PRICE.LAT) will
be searched for up to 30 data items having a use coie of C (see Chapter 5
CAMINP Routine and Chapter 4 Pricing Data). Each material item ex-
tracted (maximum of 15 per screen) will be displayed with its charac-
teristics as shown. If the material characteristics for a particular item are
not defined in the PRICE.LAT data file, values of 0 will be displayed. If
no material items with a use code of C are found, the screen will be blank.
Only one tension member material may be selected. One material item
must be provided and completely described as to the characteristics shown
before an <ESC> key will be accepted. Only the data for the selected
material item are checked. The first data field for each material item is a
Y or N to indicate whether the material is to be used or not. The MARK
of the mnateriai it,.Is ";'Ae five-character iiare of the material and the one-
character use code. The name and the 15-character description of the
selected material will be displayed in the material summary output. The
remaining six data items must be specified (non-zero and non-blank)
before execution is allowed to continue. If more than 15 material items
are provided, the user may <ESC> to the second tension member input
screen and <Fl> back to the first tension member input screen to ensure
that the correct item has been selected. An <ESC> on the second tension
member input screen initiates the data checks.

The final material input screens involve the desired anchors for a
guyed structural system, as follows:

Appendix A Program Users Guide All

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Anchor Material Screen REVISION # 0

INDICATE DESIRED ANCHOR TO BE USED (Y-Yes N-No)

ALLOW MODULUS ROD ANCHOR UNIT

LENGTH STRENGTH ELASTIC DIAMETER DIAMETER PRICE

MARK (INCH) (KIPS) (10**6) (INCH) (INCH) ($/EA) DESCRIPTION

N T0146A 66 58 29 1.25 10 32.8 1 1/4 X 66 10-I

N T0148A 96 58 29 1.25 10 39.6 1 1/4 X 96 10-I

N T0816A 66 36 29 1.00 8.0 20.5 1 X 66 8-INCH T

N T2537A 96 58 29 1.25 14 59.6 1 1/4 X 96 14-I

N T4345A 54 23 29 .75 4 11 3/4 X 54 4-INCH

N T6346A 66 23 29 .75 6 13.7 3/4 X 66 6-INCH

Nine data fields are provided for each anchor. Before this input screen
is displayed, the project pricing data file (PRICE.LAT) will be searched
for up to 30 data items having a use code of A (see Chapter 5 CAMINP
Routine and Chapter 4 Pricing Data). Each material item extracted (maxi-
mum of 15 per screen) will be displayed with its characteristics as shown.
If the material characteristics for a particular item are not defined in the
PRICE.LAT data file, values of 0 will be displayed. If no material items
with a use code of A are found, the screen will be blank. Up to five (5)
anchor materials may be selected. These selected material items must
be provided and completely described as to the characteristics shown
before an <ESC> key will be accepted. Only the data for the selected
material items are checked. The first data field for each material item is a
Y or N to indicate whether the material is to be used or not. The MARK
of the material item is the five-character name of the material and the one-
character use code. The name and the 15-character description of the
selected material will be displayed in the material summary output. The
remaining six data items must be specified (non-zero and non-blank)
before execution is allowed to continue. If more than 15 material items
are provided, the user may <ESC> to the second anchor input screen and
<Fl> back to the first anchor input screen to ensure that the correct items
have been selected. An <ESC> on the second anchor input screen initiates
the data checks.

At the conclusion of the input, the project data are copied from the
designated scratch disk drive to the floppy disk drive. A disk must reside
in the floppy disk drive while the program is executing. When the data
have been transferred to the floppy disk, the input program function is
complete, and control is returned to the original program option prompt.

EDit Program Option. The EDit program option allows for the review
and/or modification of the data for a project which has been previously
defined. If the input project name and revision number do not define an
existing project data file, an error message is displayed and the PROJECT
NAME prompt is displayed. If a list of the defined project data file names

A12 Appendix A Program Users Guide

contained on the floppy disk are desired, a response of DIR will produce
such a list (see OUTDIR Routine in Chapter 3 Utility Routines). When an
existing project name and revision number are provided, the data from the
corresponding project data file are transferred from the floppy disk to the
designated scratch disk drive. The ten input screens described in the
INput Program Option section above are displayed sequentially during the
edit process (see Chapter 5 CAMINP Routine). Each input screen is ter-
minated with an <ESC> or an <Fl> key, and the data checks are made
with an <ESC> termination as described above. When the last input
screen has been reviewed/modified successfully, the data are transferred
to the floppy disk drive, and control is returned to the original program
option prompt.

EXecution Program Option. The EXecution program option initiates
the design for the structure as defined in the specified project data file.
Designs are initiated for the overall structure (see Chapter 6 DESIGN
Routine), the footing/foundations required (see Chapter 7 FOOTING
Routine), and the anchoring system (if the system is guyed, see Chapter 8
ANCDES Routine). As the individual designs are being accomplished, an
appropriate display is provided on the screen. At the conclusion of the
system designs, the project output is begun (see Chapter 9 Output
Routines). The initial output form is a plan view of the final structure.
The plan view is displayed on the monitor screen. The plan view can be
cleared from the screen by depressing any key, and the following prompt
will be displayed:

Plot to Printer (Y/N)?

If a printer plot is desired, a response of Y (y) should be provided. The
plan view displayed originally on the screen will be transmitted to the
printer. The remaining output forms will be generated to a designated se-
quential data file, and at the conclusion of this output, the following
prompt will be displayed:

File Name: PprojectO.PRT

UTILITY MENU

B - Browse the file

C - Copy the file to drive A:

P - Print the file

Q - Quit

Enter Selection (B/C/P/Q) -

The B(rowse) option will display the designated output file on the
screen and the user may review the output. The arrow, <Home>, <End>,
<Page Up>, and <Page Down> keys may be used to scroll through the
output.

Appendix A Program Users Guide A13

The C(opy) option will copy the designated output file from the resi-

dent (hard) disk drive to a floppy disk on the A disk drive.

The P(rint) option will output the designated output file to the printer.

The Q(uit) option will allow the user to save the designated output file
on the resident disk drive or erase the output file. It is recommended that
if the output is to be retained, copy the output to the same floppy disk con-
taining the project data and erase the output file from the hard disk drive.

EDITPRIC Program. The pricing data file (PRICE.LAT) is an in-
tegral program element during the INput program process. The contents
of this data file are searched before the support member, netting, tension
member, and anchoring input screens are displayed. As new materials be-
come available, or when existing material data items need updating, the
pricing data file can be used to maintain a permanent record of these data.
If a user were to simply edit the project data input screens, those changes
would affect only that project and would not affect any other project. As
the data for any new project are being input, the current contents of the
pricing data file are searched, and updated/added materials are included in
the material screens. The EDITPRIC program may be used to update ex-
isting material characteristics, add new materials to the pricing data file,
or delete existing material items from the pricing data file. The
EDITPRIC program is executed at the system level by typing the
following:

EDITPRIC <ENTER>

The stand-alone executable program EDITPRIC has been provided in
the library of program modules, and is to be used to add material names
and associated data to the contents of the pricing data file. The following
conventions must be adhered to while adding data to the pricing data file:

(1) Existing material MARK names should not be duplicated; if the
MARK name exists in the current version of the PRICE.LAT
data file, subsequent data inputs will replace the current data in
the data file. The first five characters of the MARK name can
be any combination of letters and/or numbers or symbols, but
the user is encouraged to use a systematic naming convention to
avoid later confusion. The sixth character of the MARK name
will be the use code of the data item.

(2) The use code for the material item to be added must follow the
convention of the current list of use codes incorporated in the
program (see Table Al below). If a new use code is to be
defined, a record of this use code must be maintained, so that
when similar materials (with the same use code) are added, the
same use code will be used. Simply stated: if an additional
support member is to be included in th- PRICE.LAT data file,

A14 Appendix A Program Users Guide

Table Al

Current Pricing Data File Use Codes and Descriptions

Use Code Description

A Anchors and related materials

B Bolts and primary connectors

C Structural tension members (cables)

E Eyebolts

M Pulleys

N Netting

P Structural support members

R Rings and snap connectors

T Tumbuckles

the use code for that item must be specified as 'P'. The same
applies for the other items listed in Table Al.

(3) Careful attention must be provided as to the required units of
each data item. The current version of the Camouflage
Program assumes that the convention unit of distance is
provided in feet, area in square feet, material strengths in either
kips or kips per square inch and so on.

A brief discussion of the operation of the EDITPRIC program is
provided to illustrate the required input conventions described above. To
execute the program, simply type the following:

EDITPRIC <ENTER or RETURN>

A title screen will appear followed by the program options prompt, as
shown below:

INPUT, EDIT, DELETE, DISPLAY, OR END (IN/ED/DE/DI/END) ?

One of the five two-character program options should be provided.
The program options allow for the INput of a single material item and its
data, the EDiting of a single material item's data, for the DEletion of a
single material item and its data, the Display of the use code currently
being used, and for the program to be ENDed.

Input Program Option. A response of IN (in) will allow the INput of
one material item with its associated data. A prompt requiring the

Appendix A Program Users Guide A15

six-character MARK INDEX (name) of the item to be input will appear.
Once this input is provided, the screen shown below will be displayed,
and tVe user should input the data for the other seventeen data fields. The
inpui will be terminated when the <ESC> key is depressed. An example
of this input is provided as follows:

INPUT, EDIT, DELETE, DISPLAY, OR END (IN/ED/DE/DI/END) ? in

Input Item Mark Index or END? ABCXYZ

U. S. ARMY CORPS OF ENGINEERS

UNIT PRICING DATA

RECORD NO. 158

ITEM MARK INDEX ABCXYZ

PRIMARY CATEGORY

MATERIAL SIZE

PRICING UNIT OF MEASURE

ALLOWABLE STRENGTH (KSI)

ESTIMATE UNIT OF MEASURE

ESTIMATE UNIT WEIGHT (WET OR DRY)

FEDERAL STOCK NUMBER

FABRICATED PART/USE DESCRIPTION

MODULUS OF ELASTICITY (10**6)

X-SECT AREA/DIAMETER/THICKNESS

MOMENT OF INERTIA

COEFF OF THERMAL EXPANSION (10**-6)

ANCHOR SIZE (HELIX, INCHES)

ITEM UNIT PRICE

ERECTION TIME (MAN-HRS)

DRAG COEFFICIENT (NET ONLY)

NOT IN USE CURRENTLY

Press <ESC> when input is complete

Edit Program Option. The EDit program prompt allows the data for the
specified item to be modified and restored to the current pricing data file.
If the specified item MARK does not currently exist in the pricing data
file, an error message is displayed and the original prompt repeated. If
the specified MARK is found in the data file, the values of the individual
data items will be displayed, and the user may change any of the seven-
teen values (excluding the MARK name of the item). The current con-
tents of the pricing data will be modified at the conclusion of each EDit
program function.

Delete Program Option. The DElete program function will allow a
specified MARK name and its data to be deleted from the pricing data
file. This program function should only be used if the current pricing data
file is full (2,002 data items), and any unused data items are to be deleted

A16 Appendix A Program Users Guide

to provide the space for new data items. Extreme care should be taken
when using this program function.

Display Program Option. The DIsplay program function will provide a
display of the current contents of the pricing data file. This display will
provide the number of data items and the beginning record numbers cur-
rently existing for each of the 37 use codes. No other user input is al-
lowed, and the display is erased when any key is depressed. An example
of this display is provided below:

PRICE.LAT CONTENTS

NUM CHAR BEGAD NOITEM NUM CHAR BEGAD NOITEM NUM CHAR BEGAD NOITEM

1 0 0 13 B 7 11 25 N 45 5

2 0 0 0 14 C 18 8 26 0 :30 0

3 1 0 0 15 D 26 0 27 P 50 4

4 2 0 0 16 E 26 13 28 Q 54 0

5 3 0 0 17 F 39 0 29 R 54 6

6 4 0 0 18 G 39 0 30 S 60 0

7 5 0 0 19 H 39 0 31 T 60 19

8 6 0 0 20 I 39 0 32 U 79 0

9 7 0 0 21 J 39 0 33 V 79 0

10 8 0 0 22 K 39 0 34 W 79 0

11 9 0 0 23 L 39 0 35 X 79 0

12 A 1 6 24 M 39 6 36 Y 79 0

37 Z 79 1

NO. RECORDS 79

The data displayed in the table above provide the number of the use
code (NUM), the associated one-character use code (CHAR), the begin-
ning record number (BEGAD) of the use code, and the number of material
items (NOITEM) in each use code. From those data, the use code A is ihe
first defined use whose material data begin in the first available record
(BEGAD=I) and there are six (NOITEM=6) material items with a use
code of A. After the display table has been cleared from the screen, the
following prompt will be provided:

LIST MARKS FOR USE CODE OR END?

A one-character use code can be provided, and the marks (names) of
any material items with that use code will be listed. The display function
can be used to ensure that item marks are not duplicated.

End Program Option. When the desired program functions are com-
pleted, the program may be terminated by providing END (end) to the
original program option prompt.

Appendix A Program Users Guide A17

Appendix B
Design Routine Formulations

DESIGN INPUT. The input file for the design program must include
the following information:

1) basic plan view dimensions.

2) pole sizes and material properues,

3) cable sizes and material properties,

4) structural loads, and

5) design coefficients.

The basic plan view dimensions include the number of bays and each
bay width in one direction, and the total length perpendicular to these bay
widths. The direction perpendicular to the bay widths is the design direc-
tion. The distan:e between support members in the design direction is
determined through the design process. Support members in the design
direction are equally spaced throughout the structure. All of these distan-
ces must be given in feet (see Figure B I).

All support members in the structure must be the same size and have
the same material properties. Support member size must include height in
feet (see Figure B2), moment of inertia in inches 4, cross-sectional area in
square inches, cross-sectional width or diameter in inches, and the mini-
mum allowed distance between members in feet. The minimum allowed
distance between members allows the user to specify a distance which is
considered too dense for practical use. Material properties for the support
members must include modulus of elasticity and yield strength in pounds
per square inch.

All cables in the structure must have the same material properties and
cross-sectional area. Cross-sectional area of the cable must be given in
square inches. A maximum sag distance must be defined which controls
all cables. The maximum sag distance is the maximum distance in feet
the cable may sag at its midpoint relative to its two ends (see Figure B3).

Appendix B Design Routine Formulations B1

ZA

y

:,iz

TOTAL DISTANCE IN

DESIGN DIRECTION

x

Figure B1. Basic plan view dimensions

FABRIC COVERING ON SIDES

ANGLE BETWEEN GROUND

QLQ

AND FABRIC COVERING

DEGREES

Figure B2. Support member characteristics

B32 Appendix 8 Design Routine Formulations

L/2

L

Figure B3. Tension member sag distance

The material properties of the cable must include the modulus of elasticity
in pounds per square inch, the maximum tensile force the cable can main-
tain in pounds, and the linear weight of the cable in pounds per foot.

Loading information must include the netting or fabric covering wet
weight and snow load in pounds per square foot, and the wind velocity in
miles per hour.

Coefficients needed for the procedure include the drag coefficient for
the fabric covering, and the factor of safety to be used for the entire struc-
ture. The structure must also be defined as being with or without guys on
all exterior poles. If guyed, the guys are installed at a 45-degree angle
connecting the top of the pole to the ground anchors (see Figure B2). The
angle that the fabric covering makes with the ground on the sides of the
structure must also be specified in degrees (see Figure B2). It is assumed
that the fabric covering does not come in contact with the guys. The angle
for the fabric covering must therefore be an angle less than 45 degrees.

NODE AND CABLE NUMBERING. For a given trial pole spacing
in the design direction, the number of nodes and cables can be calculated.

Number of Poles in Number of (B 1)
Bay Width Direction (NPY) Bays (NB)

Total Length in (B2)
Number of Poles in Design Direction (TL) +

Design Direction (NPX) Trial Pole Spacing in
Design Direction (PSPC)

Appendix B Design Routine Formulations B3

Number of = NPX * NPY (B3)
Total Poles (NP)

Number of
Horizontal = 2 * [(NPX - 1) + (NPY - 1)] + 2 * (NPX - 1)

Cables (NC)

• (NPY - 1) + (NPX 2) * (NPY - 1) (B4)

+ (NPX - 1) * (NPY - 2)

In Equation B4, the first term counts the perimeter cables, the
second term the diagonal cables, the third term the interior cables in the
Y-direction (bay dimension), and the fourth term the interior cables in
the X-direction (design dimension).

If the structure is guyed, the number of guys is given by the following
equation.

Number of Guys (NG) = 2 * (NPX + NPY) (B5)

Each cable is assigned a beginning node and an ending node. If the
cable is parallel to the bay width or Y-direction, the beginning node is the
lower node, and the ending node is the higher node. If the cable is paral-
lel to the design or X-direction, the beginning node is the left node, and
the ending node is the right node. If the cable is a diagonal sloping up
and to the right, the beginning node is the lower left node, and the ending
node is the upper right node. If the cable is a diagonal sloping up and to
the left, the beginning node is the upper left node, and the ending node
is the lower right node. All guys are defined as beginning at the only
node to which they are attached and ending at an imaginary node number.
Guys along the bottom line of the plan view have imaginary node number
-1000. Guys along the top line of the plan view have imaginary node
number -2000. Guys along the left line of the plan view have imaginary
node number -3000. Guys along the right line of the plan view have im-
",ginary node number -4000. The imaginary node numbers define the
direction of the guys.

Each node is classified as one of nine types based on the number of
cables and configuration of the cables which have that node as their begin-
ning end. The node types are shown in Figure B4.

Node type (1) is node (1). Node type (1) is the beginning node for
three horizontal cables and two guys. The three horizontal cables are
numbered starting with the cable parallel to the Y-direction, then the
diagonal cable sloping up and to the right, and ther the cable parallel to
the X-direction (see Figure B5). If guys are present, all guys are num-
bered after all horizontal cables have been numbered.

B4 Appendix B Design Routine Formulations

G®. 0

' @ 5 5

o1 @4*N (o " © ©)- Q.0 g
L" GUYS(I USED),

Figure B4. Node types

Node t, pe (2) is any node on the bottom line of the plan view exclud-
ing the two endpoints. Node type (2) is the beginning node for four
horizontal cables and one guy. The four horizontal cables are numbered
starting with the diagonal cable sloping up and to the left, then the cable
parallel to the Y-direction, then the diagonal cable sloping up and to the
right, and then the cable parallel to the X-direction.

Node type (3) is the right-most node on the bottom line of the plan
view. Node type (3) is the beginning node for two horizontal cables and
two guys. The two horizontal cables are numbered starting with the
diagonal cable sloping up and to the left, and then the cable parallel to the
Y-direction.

Node type (4) is any node on the left-most line of the plan view exclud-
ing the endpoints. Node type (4) is the beginning node for three horizon-
tal cables and one guy. The three horizontal cables are numbered starting

Appendix B Design Routine Formulations B5

I

12 12 3 12
I4

/ 3 ---

2 1
22

3
12

3 \4

Figure B5. Cable numbering

with the cable parallel to the Y-direction, then the diagonal cable sloping
up and to the right, and then the cable parallel to the X-direction.

Node type (5) is any node on the interior of the structure. Node type
(5) is the beginning node for four horizontal cables and no guys. The four
horizontal cables are numbered starting with the diagonal cable sloping up
and to the left, then the cable parallel with the Y-direction, then the

B6 Appendix B Design Routine Formulations

diagonal cable sloping up and to the right, and then the cable parallel to
the X-direction.

Node type (6) is any node on the right most line of the plan view ex-
cluding the endpoints. Node (6) in the beginning node for two horizontal
cables and one guy. The two horizontal cables are numbered starting with
the diagonal cable sloping up and to the left, and then the cable parallel to
the Y-direction.

Node type (7) is the left-most node on the top line of the plan view.
Node type (7) is the beginning node for one horizontal cable and two
guys. The horizontal cable is a cable parallel to the X-direction.

Node type (8) is any node on the top line of the plan view excluding
the endpoints. Node type (8) is the beginning node for one horizontal
cable and one guy. The horizontal cable is a cable parallel to the
X-direction.

Node type (9) is the right-most node of the top line of the plan view.
Node type (9) has no horizontal cables and two guys.

All horizontal cables are numbered before any guys are numbered if
guys are present. The horizontal cables are numbered consecutively
moving from node to node consecutively. All horizontal cables beginning
at node (1) are numbered in the order of its node type, then the horizontal
cables beginning at node (2) are numbered in the order of its node type,
and so on until node by node and cable by cable all of the cables are
numbered.

If guys are present, the guys are numbered beginning with the number
following the final horizontal cable. All guys on the bottom line of the
plan view are numbered from left to right, then all guys on the top line of
the plan view are numbered from left to right, then all guys on the left-
most line of the plan view are numbered from bottom to top, and then all
guys on the right-most line of the plan view are numbered from bottom to
top.

UNIFORM DISTRIBUTED LOADS FOR EACH CABLE TYPE.
The applied loads of cable weight, fabric covering weight, and snow load
are reduced to a single uniform distributed load along the sagged cable
length as previously described. Each cell in the structure is divided into
four triangles by the diagonal cables. Each one of these triangles is
divided into three more triangles by passing lines from the three vertices
to the centroid of the larger triangle as shown in Figure B6. The loads
carried by each load triangle is applied to the cable adjacent to it.

Cable weight and fabric covering weight are considered to be dis-
tributed along the sag curve of the cables already, although not uniformly,
but the snow load is given as a load per horizontal area. The fabric cover-
ing weight is taken as the wet weight of the fabric in order to obtain the

Appendix B Design Routine Formulations B7

PSPC/2

\\

I ' I

PSPC/6_ PSPCI6

Figure B6. Single cell load triangles

largest load case. All loads are then reduced to a uniformly distributed
load along the sag curve of the cable. Since the distributed load must be
known before the actual length of the cable can be calculated, the given
sag distance is added to the horizontal length of the cable to approximate
the actual sagged length of each load triangle.

Cables are classified as one of five types: (1) a bay-length cable on the
exterior of the structure, (2) a bay-length cable on the interior of the struc-
ture, (3) a trial-pole-space-length cable on the exterior of the structure,
(4) a trial-pole-space-length cable on the interior of the structure, and
(5) a diagonal cable. Cable type (1) carries the loads from the adjacent
load triangle and the loads from the fabric and snoAw on the adjacent side
panel of fabric. Cable type (2) carries the loads from the adjacent load tri-
angles on each side. Since these triangles have the same area, th'e load on
one load triangle can be calculated and doubled. Cable type (3) carries
the loads from the adjacent load triangle and the loads from the fabric and
snow on the adjacent side panel of fabric. Cable type (4) carries the loads
from the adjacent load triangles on each side. These load triangles may

B8 Appendix B Design Routine Formulations

not have the same area since bay widths may not be the same; therefore,
each must be calculated and added to one another. Cable type (5) carries
the loads from four adjacent load triangles. Each one of these load tri-
angles has the same area, so one can be calculated and quadrupled. (See
Figure B7.)

For cable type (1), the uniform distributed load due to snow load, wet
fabric weight, and cable weight is:

[PH PSPC S
=[tan (ANGLE) + 12-j SNOW

[BW + SMAX] * CAMOWWT [PH (ANGLE) + L3 SMAX + PSPC (B6)

[BW + SMAX] * CWT

BW

For cable type (2):

q =- * PSPC * SNOW

[BW + SMAX] * [PSPC + SMAX] * CAMOWWT (B7)
6 6*BW

[BW + SMAX] * CWT
BIW

For cable type (3):

PH I 1
q an (ANGLE) 1 - BW *SNOW

[PSPC + SMAX] * CAMOWWT PH 13 SMAX + 1 (B8)
+PSPC [in (ANGLE) + 12 12 + W

[PSPC + SMAX] * CWT

PSPC

For cable type (4):

[B1I'2 + BWI] * SNOW
12

[PSPC + SMAX] * CAMOWWT + (B9)+ * [BW2 +BW + 2 *SMAX] (9
12 * PSPC

[PSPC + SMAX] * CWT

PSPC

Appendix B Design Routine Formulations B9

FABRIC CABLE TYPE (1)
COVERING
ON SIDE

PANEL

ANGLE

PH
TAN (ANGLE) ZIE PC

SIDE VIEW PANEL PLAN VIEW

CABLE TYPE (2) CABLE TYPE (3)

SIDE

PSPC PSPC IT PANEL

PLAN VIEW PLAN VIEW

CABLE TYPE () CABLE TYPE (5)

Z4)

(5) •

PSPC -bI PSPc

PLAN VIEW PLAN VIEW

Figure B7. Cable types

B1 ~ Appendix B Design Routine Formulations

For cable type (5):

BW * PSPC * SNOW+ [BW + SMAX] * [PSPC+ SMAX] * CAMOWWT (B10)
q= -3*L

[L + SMAX] - CWT
+

L

WIND FORCES. Wind forces for this procedure are calculated by the
mechanics of fluids equation given by Rouse and Howe (1953):

Wind Force (WF) = DC*'*00024* WV2 *VA (B*1)
2

where WF is wind force in pounds, DC is the drag coefficient of the
fabric, WV is the wind velocity in feet per second, and VA is the vertical
projection area in square inches of the side panel. Once this force is
known, it is divided by the length of the cable and added to the uniformly
distributed load of the adjacent cable.

FINAL FORCES AND STRESSES COMPARED TO ALLOW-
ABLES. Using the final deflections for a given trial pole spacing, equa-
tions 7-10 from Chapter 6 DESIGN Routine, and the following formulas
taken from Leonard (1988), we can calculate the final tensile force in each
cable:

q * (L0 + AL)
(B12)

3= 2*H

y= sin _1 * tan e) (B 13)

T = H0 * cosh [y + 031 (B14)

The force "T" is the final tensile force along the length of the cable at
the supports. This force can be compared to the allowable force in each
cable which is the maximum force a cable can hold divided by the factor
of safety.

The stress at the bottom of each support member is made up of three
parts: (1) the vertical reaction for each node to the uniformly distributed
load on each cable, which can be calculated as one half the length of the
cable multiplied by the uniformly distributed load, (2) the moment caused
by the deflections at the top of the pole, which are easily calculated for
the cantilever, and (3) the vertical component of guy forces at exterior
joints if guys are used, which is calculated by equation 2 in Chapter 6
DESIGN Routine.

Appendix B Design Routine Formulations 811

References.

Leonard, W. M. (1988). Tension structures. McGraw-Hill Book Com-
pany, New York, NY.

Rouse, H. and Howe, J. W. (1953). Basic mechanics of fluids. John
Wiley and Sons, New York, NY.

B12 Appendix B Design Routine Formulations

Appendix C
Program Source Codes

The source codes for the two FORTRAN routines developed for the
Camouflage Program are included in Appendix C. The DESIGN routine
(Chapter 6 DESIGN Routine) accomplishes the complete structural design
for the project. The DRAW routine (Chapter 9 OUTPUT Routine)
provides the plan view of the structure on the monitor screen and, option-
ally, on the printer.

The source codes for the DESIGN routine are provided below:

C TENSION STRUCTURE DESIGN (BRITT SIMMONS) 11 MAR 91

C REVISED 28 MAR 91

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO ,FK01

>FK02 ,FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTMAX ,GUY ,H ,HO ,IA ,IB ,JNT1

>JNT2 ,KINC ,KN ,NB ,NBA ,NC ,NG
>NHB ,NP ,NPX ,NPY ,NR ,NREDO ,NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ (242, 14)

CHARACTER*1 GUY

DO 10 1-1,242

DELT(I)-0.0

10 CONTINUE

DO 20 1-1,128

UOLD(I)-0.0

20 CONTINUE

READ (5, *)NB

DO 30 I-1,NB

READ (5, *)BW(I)

30 CONTINUE

READ(5, *)TL

READ (5, *)PH, PE, PI, PA,PFY,PW, PMSPC

READ(5, *)CE,CA,TMAX,SMAX,CWT

Appendix C Program Source Codes C1

READ (5, *) ANGLE

READ(5, *)CAMOWT,SNOW,WINDV,EM4AX

READ (5, 32) GUY

32 FORMAT(Al)

READ (r, *)FS

READ(5, *)D).,AG

C ***CONVERT TO i0UND AND SQUARE INCH UNITS

PE=PE*10. 0**6

PB'Y=PFY* 10.0**3

CE=CE*10.0**6

TMAX=TMAX*10.0**3

C *** CONVERSIONS,LBS & INCHES & RADIANS (FPS F'OR WIND

VELOCITY)

DO 40 I=1,NB

BW(I)=BW(I) *12.0

40 CONTINUE

TL=TL*12 .0

PH=PH* 12.0

PMSPC=PMSPC*12 .0

SMAX=SMAX* 12.0

CWT=CWT/12 .0

ANGLE=ANGLE*3. 141592"-54/180. 0

CAMOWT=CAMOWT/14 4.0

SNOW=SNOW/14 4.0

WINDV=WINDV*5280 .0/3600 .0

PR=SQRT (PI/PA)

TMAX=TMAX/FS

PFY=PFY/FS

IF (FS.GT.2 .0)THEN

PFB=3.141592654**2*PE/FS/(2.0*PH/.Th)**2

EL7E

PFB=3.141592654**2*PE/2.0/(2.0*PiH/PR)**2

END IF

NSPCH=INT (TL/PMSPC)

FNSPCL-0 .9

NSPC=INT (TL/PMSPC)

WINDS=1 .0

TMMAX=0 .0

GTMAX=0. 0

200 PSPC=TL/NSPC

NPX=NSPC+l

NPY=NB+ 1

NP=NPX'*NPY

KINC=1 6

DO 210 I=1,2*NP

U (I)=0. 0

210 CONTINUE

CALL S1000

IF(GUY.EQ.'%")CALL S4000

240 CALL S5000

C2 ~Ap- -:-dix C Program Source Codes

CALL S14000

CALL S6000

CALL S9000

CALL S10000(EMAX)

IF(GOOD.EQ.1.0)GO TO 290

CALL S11000

KINC=INT (KINC/2)

LE (KINC .EQ.0) KINC=l

GO TO 240

290 CALL S13000

IF(GOOD.EQ.1.0)GO TO 320

IF(NSPC.EQ.INT(TL/PMSPC))THEN

WRITE(6,*) 'SELECTED POLES WILL NOT SUPPORT STRUCTURE.'

STOP

ENDIF

IF(NSPCH.EQ. (NSPC+1))THEN

NSPC=NSPCH

GO TO 365

ENDIF

FNSPCL=NSPC

NSPC=NSPC+INT ((NSPCH-INT (FNSPCL+O. 2)) /2.0+0. 51)

GO TO 20C

320 CALL S12000

IF(GOOD.EQ.1.0)GO TO 350

!F(NSPC.EQ.INT(TL/PMSPC))THEN

WRITE(6,*) 'SELECTED CABLES FAIL AT MINIMUM POLE

SPACING.'

STOP

ENDIF

IF(NSPCH.EQ. (NSPC+1))THEN

NSPC=NSPCH

GO TO 362

ENDIF

FNSPCL=NSPC

NSPC=NSPC+INT((NSPCH-INT(FNSPCL+0.2))/2.0+0.51)

GO TO 200

350 IF(NSPC.EQ.(FNSPCL+1.0))GO To 362

NSPCH=NSPC

NSPC=NSPC-INT ((NSPCH-INT (FNSPCL±0.2)) /2.0+0.51)

GO TO 200

362 CALL S19000

IF(GUY.EQ.'Y')CALL S20000

365 WINDS=2.0

370 KINC=16

NPX=NSPC+ 1

NPY=NB+1

NP =N PX *NPY

DO 380 1=1,2*NP

U (1) =0.0

380 CONTINUE

Appendix C Program Source Codes C

CALL S1000

IF(GUY.EQ.'Y')CALL S4000

400 CALL S5000

CALL S15000

CALL S6000

CALL S9000

CALL S10000(EMAX)

IF(GOOD.EQ.1.0)GO TO 450

CALL S1I000

KINC=INT(KINC/2)

IF(KINC.EQ.0)KINC=I

GO TO 400

450 CALL S13000

IF(GOOD.EQ.1.0)GO TO 475

IF(NSPC.EQ.INT(TL/PMSPC))THEN

WRITE(6,*) 'SELECTED POLES WILL NOT SUPPORT STRUCTURE.'

STOP

ENDIF

NSPC=NSPC+1

PSPC=TL/NSPC

TMMAX=0.0

GTMAX=0.0

NREDO=I

GO TO 370

475 CALL S12000

IF(GOOD.EQ.1.0)GO TO 497

IF(NSPC.EQ.INT(TL/PMSPC))THEN

WRITE(6,*) 'SELECTED CABLES FAIL AT MINIMUM POLE

SPACING.'

STOP

ENDIF

NSPC=NSPC+1

PSPC=TL/NSPC

TMMAX=0.0

GTMAX=0.0

NREDO=I

GO TO 370

497 CALL S19000

IF(GUY.EQ.'Y')CALL S20000

WINDS=3.0

505 KINC=16

NPX=NSPC+l

NPY=NB+I

NP=NPX*NPY

DO 510 I=1,2*NP

U(I)=O.O

510 CONTINUE

CALL S1000

IF(GUY.EQ.'Y')CALL S4000

535 CALL S5000

C4 Appendix C Program Source Codes

CALL S16000

CALL S6000

CALL S9000

CALL S10000(EMAX)

IF(GOOD.EQ.1.0)GO TO 585

CALL S11000

KINC=INT(KINC/2)

IF(KINC.EQ.0)KINC=1

GO TO 535

585 CALL S13000

IF(GOOD.EQ.1.0)GO TO 610

IF(NSPC.EQ.INT(TL/PMSPC))THEN

WRITE(6,*) 'SELECTED POLES WILL NOT SUPPORT STRUCTURE.'

STOP

ENDIF

NSPC=NSPC+1

PSPC=TL/NSPC

TMMAX=0.0

GTMAX=0.0

NREDO=2

GO TO 505

610 CALL S12000

IF(GOOD.EQ.1.0)GO TO 635

IF(NSPC.EQ.INT(TL/PMSPC))THEN

WRITE(6,*) 'SELECTED CABLES FAIL AT MINIMUM POLE

SPACING.'

STOP

ENDIF

NSPC=NSPC+1

PSPC=TL/NSPC

TMMAX=0.0

GTMAX=0 .0

NREDO=2

GO TO 505

635 CALL S19000

IF(GUY.EQ.'Y')CALL S20000

CALL S21000(EMAX)

CALL S22000

OPEN (UNIT=12,FILE='DEFLECTS.DAT')

DO 650 I=1,NP*2

650 WRITE(12,9999)U(I)

9999 FORMAT(' ',F10.6)

CLOSE (UNIT=12)

OPEN (UNIT=12,FILE='DESIGN.DAT')

WRITE(12,*)GOOD

CLOSE (UNIT=12)

999 STOP

END

Appendix C Program Source Codes C5

SUBROUTINE S1000

C ***** SET UP CABLE INFORMATION DATA FILE WITHOUT GUYS

COMMON ANGLE ,BETA ,BW(10),CA CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) FKO FK01

>FK02 ,FKP ,FL ,FS ,FXFL FYFL GAMMA GOOD

>GTMAX ,GUY ,H ,HO ,IA IB JNT1I

>JNT2 ,KINC ,KN ,NB ,NBA INC ING

>NHB ,NP ,NPX ,NPY ,NR NREDO NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW Q

>QADD ,QMAX ,SO ,SMAX ,SNOW THETA fTL

>TMAX ,TMMAX ,U(128),UOLD(128) WINDF WINDS WINDV

>ZZ(242,14)

CHARACTER*1 GUY

QMAX=0.0

C PERIMETER CROSS INTERIOR VERT

NC-((NPX-1)+(NPY-1))*2+(NPX-I)*(NPY-I)*2+(NPX-2)*(NPY-1)

>+(NPX-I)*(NPY-2)

C INTERIOR HORZ

NG=0

IF(GUY.EQ.'Y')NG=2*NPX+2*NPY

KN-0.0

DO 1720 IB=I,NPY

DO 1710 IA-1,NPX

IF(IB.NE.1)GO TO 1350

IF(IA.NE.1)GO TO 1170

C ***** CABLES JOINT CLASS 1

DO 1160 IC=1,3

IF(IC.EQ.1)THEN

KN=KN+1

FL=BW(1)

JNTI=1

JNT2=NPX+l

FXFL=0.0

FYFL=1.0

DLDX=0.0

DLDY=-I.0

CC=I.0

ENDIF

IF(IC.EQ.2)THEN

KN=KN+I

FL=SQRT(BW(1)**2+PSPC**2)

JNTI=1

JNT2=NPX+2

FXFL=PSPC/FL

FYFL=BW(1)/FL

CC=5.0

DLDX=-(SQRT((PSPC+1.0)**2+BW(1)**2)-FL)

DLDY=-(SQRT(PSPC**2+(BW(1)+1.0)**2)-FL)

ENDIF

C6 Appendix C Program Source Codes

IF (IC. EQ.3) THEN

KN=KN+l

FL=PSPC

JN Ti =1

JNT2 =2

EFxFL=1 .0

FYFL=0 .0

DLDX=- 1.0

DLDY=0.0

CC=3 .0

ENDIE'

CALL S2000

CALL S3000

1160 CONTINUE

GO TO 1710

1170 IF(IA.EQ.NPX)GO TO 1290

C *** CABLES JOINT CLASS 2

DO 1280 IC=1,4

IF'(IC.EQ.1) THEN

KN-KN+ 1

FL=SQRT(BW(1) **2+PSPC**2)

JNT 1 =IA

JNT2=NPX+ IA-i.

FXE'L=-l1*PSPC/FL

FYFL=BW(1) /FL

DLDX=SQRT((PSPC+1 .0) **2+BW(1) **2) -FL

DLDY=-(SQRT(PSPC**2+(BW(1)+1.0)**2)-FL)

CC=5 .0

ENDIF

IF (IC.EQ.2) THEN

KN=KN+ 1

FL=BW (1)

JNT 1=1A

JNT2=NPX+IA

FXFL=0 .0

FYE'L=1 .0

DLDX=0 .0

DLDY=-1.0

CC=2 .0

ENDIF

IF (IC. EQ.3) THEN

KN'-KN+ 1

FL=SQRT(BW(1)**2+PSPC**2)

JNTI1= IA

JNT2=NPX4-IA+l

F*XFL PSPC/FL

FYFL=BW(1) /FL

CC=5 .0

DLDX=-(SQRT((PSPC+1)**2+Bw(1)**2)-F'L)

DLDY=-(SQRT(PSPC**2+ (BW(1) +1) -2)-FL)

Appendix C Program Source Codes
C

ENDIEF

IF (IC.EQ.4)THEN

i(N=KN+ 1

FL=PSPC

JN T1=1 A

JN T2-I A+ 1

FXFL=1 .0

FYFL=0 .0

DLDX=-1 .0

DLDY=0 .0

CC=3 .0

ENDIF

CALL S2000

CALL S3000

1280 CONTINUE

GO TO 1710

C *** CABLES JOINT CLASS 3

1290 DO 1340 IC=1,2

IF (IC.EQ.1) THEN

KN=KN+l

FL=SQRT(BW(1) **2+PSPC**2)

JNT1=NPX

JNT2=~2*NPX-1

FXFL=-1 .0*PSPC/FL

FYFL=BW(1) /FL

DLDX=SQRT((PSPC+1.0)**2+BW(1)**2)-FL

DLDY=-(SQRT(PSPC**2+(BW(1)+1.0)**2)-FL)

CC=5 .0

ENDIF

IF (IC.EQ.2) THEN

!(N=KN+l

FL-BW (1)

JNT1=NPX

,JNT2=2*NPX

FXFL=0 .0

FYFL=1.0

DLDX=0 .0

DLDY=-1.0

CC=1 .0

ENDIF

CALL S2000

CALL S3000

1340 CONTINUE

GO TO 1710

1350 IF(IB.EQ.NPY)GO TO 1630

IF(IA.NE.1)GO TO 1450

C **** CABLES JOINT CLASS I1

DO 1440 IC=1,3

IF(IC.EQ.1) THEN

KN=KN+l

C8 Appendix C Program Source Codes

FL-SW (I B)

JNT1=(IB-1) *NPX+l

JNT2=IB*NPX+l

FXFLO .0

FYFL-1 .0

DLDX0. 0

DLDY-1 .0

CC=1 .0

ENDIF

IF (IC.EQ.2) THEN

KN=KN+ 1

FL=SQRT(BW(IB) **2+PSPC**2)

JNT1=(IB-1) *NPX+1

JNT2=IB*NPX+2

FXFL-PSPC/FL

FYFL=BW(IB) /FL

CC=5 .0

DLDX-- (SORT ((PSPC+1 .0) **2+BW (IB) **2) -FL,

DLDY=-(SQRT(PSPC**2+(BW(IB)+1.0)**2)hFL)

ENDIF

IF(IC.EQ.3)THEN

KN=KN+1

FL=PSPC

JNT1=(IB-1) *NPX+1

JNT2=(IB-1) *NPX+2

FXFL=l .0

FYFL-0.O

DLDX=-1.0

DLDY0. 0

CC-4 .0

ENDIF

CALL S2000

CALL S3000

1440 CONTINUE

GO TO 1710

1450 IF(IA.EQ.NPX)GO TO 1570

C *** CABLES JOINT CLASS 5

DO 1560 IC=1..4

IF (IC.EQ. 1) THEN

KN=KN+ 1

FL-SQRT(BW(IB) **2+PSPC**2)

JNT1-(IB-1) *NPX+IA

JNT2-IB*NPX+IA-1

FXFL--1.0*PSPC/FL

FYFL-BW(IB) /FL

DLDX-SQRT((PSPC+1.0)**2+BW(IB)**2)-FL

DLDY--(SQRT(PSPC**2+(BW(IB)+1.0)**2)-FL)

CC-S .0

ENDIF

IF (IC.EQ.2) THEN

Appendix C Program Source Codes C

KN=KN+ 1

FL=BW(IB)

JNT1=(IB-1) *NPX+IA

JNT2=IB*NPX+IA

FXFL-0.O

FYFL=1. 0

DLDX=0. 0

DLDY=-1 .0

CC-2 .0

ENDIF

IF(IC.EO.3)THEN

KN-KN+1

FL-SQRT (BW(IB) **2+PSPC**2)

JNT1-(IB-1) *NPX+IA

JNT2-IB*NPX+IA+1

FXFL-PSPC/FL

FYFL-BW(IB) /FL

CC=5.0

DLDX=-(SQRT((PSPC+1.0)**2+BW(IB)**2)-FL)

DLDY=- (SORT (PSPC**2+ (BW (IB) +1.0) **2) -FL)

ENDIF

IF (IC.EO. 4) THEN

KN-KN+l

FL-PSPC

JNT1=(IB-1) *NPX+IA

JNT2-(IB-1) *NPX+IA+1

FXFL-1 .0

FYFL-0.0

DLDX=-1.0

DLDY-0 .0

CC=4 .0

END IF

CALL S2000

CALL S3000

1560 CONTINUE

GO TO 1710

C *** CABLES JOINT CLASS 6

1570 DO 1620 IC-1,2

IF(IC.EQ.1)THEN

KN-KN+ 1

FL-SORT (BW(IB) **2+PSPC**2)

JNT1=IB*NPX

JNT2-(IB+1) *NPX-1

FXFL=-1.0*PSPC/FL

FYFL-BW(IB) /FL

DLDX-SORT((PSPC+1) **2+BW(IB) **2) -FL

DLDY=- (SORT (PSPC**2+ (BW(IB) +1.0) **2) -FL)

CC=5.0

ENDIF

IF (IC.EO.2) THEN

010 Appendix C Program Source Codes

KN=KN+1

FL=BW (IB)

JNT1=IB*NPX

JNT2=(IB+1)*NPX

FXFL=0.0

FYFL=1.0

DLDX=0.0

DLDY=-1.0

CC=1.0

ENDIF

CALL S2000

CALL S3000

1620 CONTINUE

GO TO 1710

1630 IF(IA.NE.1)GO TO 1670

C ***** CABLES JOINT CLASS 7

KN=KN+1

FL=PSPC

JNT1=(NPY-1)*NPX+I

JNT2=(NPY-I)*NPX+2

FXFL=1.0

FYFL=O.0

DLDX=-1.0

DLDY=0.0

CC=3.0

CALL S2000

CALL S3000

GO TO 1710

1670 IF(IA.EQ.NPX)GO TO 1710

C ***** CABLES JOINT CLASS 8

KN=KN+I

FL=PSPC

JNT1=(NPY-I)*NPX+IA

JNT2=(NPY-1)*NPX+IA+I

FXFL=1.0

FYFL=0.0

DLDX=-1.0

DLDY=0.0

CC=3.0

CALL S2000

CALL S3000

C ***** NO HORIZONTAL CABLES JOINT CLASS 9

1710 CONTINUE

1720 CONTINUE

RETURN

END

C0l
Appendix C Program Source Codes

2000 SUBROUTINE S2000

COMMON ANGLE ,BETA ,BW(10),CA CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) FKO FK01

>FK02 ,FKP ,FL ,FS ,FXFL FYFL GAMMA GOOD

>GTMAX ,GUY ,H ,HO ,IA IB JNT1

>JNT2 ,KINC ,KN ,NB ,NBA INC ING

>NHB ,NP ,NPX ,NPY ,NR NREDO NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW IQ

>QADD ,QMAX ,SO ,SMAX ,SNOW THETA TL

>TMAX ,TMMAX ,U(128),UOLD(128) WINDF WINDS WINDV

>ZZ(242,14)

CHARACTER*I GUY

C * DEFINE FUNCTIONS HYPERBOLIC SINE, HYPERBOLIC COSINE

C ***** AND INVERSE HYPERBOLIC SINE

FNSINH(X)-(EXP(X)-EXP(-I*X))/2.0

FNCOSH(X)-(EXP(X)+EXP(-I*X))/2.0

FASINH(X)-ALOG(X+SQRT(X**2+1.0))

C ***** CALCULATE Q, SO, AND HO FOR EACH TYPE CABLE

QADD=0.0

IF(CC.NE.I.0)GO TO 2060

C ***** Q FOR BW-LENGTH CABLE ON EXTERIOR

Q=(PH/TAN(ANGLE)+PSPC/12.0)*SNOW

Q-Q+(BW(IB)+SMAX)*CAMOWT*(PH/SIN(ANGLE)

>+13.0*SMAX/12.0+PSPC/12.0)/BW(IB)

Q=Q+(BW(IB)+SMAX)*CWT/BW(IB)

CALL S18000

GO TO 2280

2060 IF(CC.NE.2.0)GO TO 2100

C ***** 0 FOR BW-LENGTH CABLE ON INTERIOR

Q=PSPC*SNOW/6.0

Q=Q+(BW(IB)+SMAX)*(PSPC+SMAX)*CAMOWT/6.0/BW(IB)

>+(BW(IB)+SMAX)*CWT/BW(IB)

GO TO 2280

2100 IF(CC.NE.3.0)GO TO 2180

IF(IB.NE.I)GO TO 2160

C ***** Q FOR PSPC-LENGTH CABLE ON EXTERIOR DO B=1

Q=(PH/TAN(ANGLE)+BW(1)/12.0)*SNOW

Q=Q+(PSPC+SMAX)*CAPMOWT*(PH/SIN(ANGLE)+13*.SMAX/12+BW(1)/12)/PSPC

Q-Q+(PSPC+SMAX)*CWT/PSPC

CALL S17000

GO TO 2280

C ***** Q FOR PSPC-LENGTH CABLE ON EXTERIOR FOR B=NPY

2160 Q=(PH/TAN(ANGLE)+BW(NPY-1)/12.0)*SNOW

Q=Q+(PSPC+SMAX)*CAMOWT*(PH/SIN(ANGLE)

>+13.0*SMAX/12.0+BW(NPY-1)/12.0)/PSPC

Q=Q+(PSPC+SMAX)*CWT/PSPC

CALL S17000

GO TO 2280

C12 Appendix C Program Source Codes

2180 IF(CC.NE.4.0)GO TO 2220

C ***0 FOR PSPC-LENGTH CABLE ON INTERIOR

Q=SNOW* (BW(IB)+BW(IB-1))/12.O

Q=Q+ (PSPC+SMAX) *CAMOWT* (BW (IB) +BW(IB-1)

>+2.0 *SMAX) /12. O/PSPC+ (PSPC+SMAX) *CWT/PSPC

GO TO 2280

2220 IF(CC.NE.5.O)GO TO 2260

C ***** Q FOR DIAGONAL

Q=(BW(IB)*PSPC*SNOW+(BW(IB)+SMAX)*(PSPC+SMAX)*CAMOWT)/3.0/FL

>+ (FL+SMAX) *CWT/FL

GO TO 2280

2260 CONTINUE

C ***** Q FOR GUY

Q=CWT

2280 CONTINUE

C ***** CALCULATE HO, SO, FKO1, AND FK02

IF (CC. LE.5 .0 .AND.Q.GT.QMAX) QMAX=Q

IF (CC. LE .5.0) THEN

THETA=0. 0

ELSE

THETA=0. 785398163

ENDIF

IF(CC.LE.5)THEN

FO=0 . *SMAX/FL

ELSE

FD=SMAX/FL* (CWT/QMAX)

ENDIF

IF(WINDS.EQ.i.O.AND.CC.EQ.3.0.AND.IB.EQ.1)Q=Q+QADD

IF(WINDS.EQ.2.0.AND.CC.EQ.1.0.AND.IA.EQ.1)Q=Q+QADD

IF(WINDS.EQ.3.0.AND.CC.EQ.3.0.AND.IB.EQ.NPY)0=Q+QADD

HO=Q*FL/8. 0/FO

BETA0-Q*FL/2 .0/HO

X-BETAO*TAN (THETA) /FNSINH(BETAO)

GAMMAO=FASINH CX)

X=GAMMAO +BETAO

Y=GAMMAO -BETAO

SO1=HO* (FNSINH(X)-FNSINH(Y)) /

SINX=FNSINH CX)

COSX=FNCOSH (X)

SINY=FNSINH (Y)

COSY=FNCOSH CY)

S02=(FL/2.0/CA/CE) *(HO+HO**2* (SINX*COSX-SINY*COSY) /0/FL)

SO=SO1-S02

FKO1=TAN (THETA) **2+Q*FL* (1.O+TAN (THETA) **2

>+16.O*FO**2/3.0) /8.0/CA/CE/FO

FK02=SO/FL-1.0-TAN(THETA)**2/K.0

>-8 .0*FO**2+3 .0*Q*FL/16 .0/CA/CE/FO

RETURN

END

Appendix C Program Source Codes 013

SUBROUTINE S3000

COMMON ANGLE ,BETA ,BW(10),CA CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) FK0 FK01

>FK02 ,FKP ,FL ,FS FXFL FYFL GAMMA GOOD

>GTMAX ,GUY ,H ,HO IA ,IB JNTI

>JNT2 ,KINC ,1KN ,NB NBA INC ING

>NHB ,NP ,NPX ,NPY NR NREDO NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q I

>QADD ,QMAX ,SO ,SMAX SNOW THETA TL I

>TMAX ,TMMAX ,U(128),UOLD(128) WINDF WINDS ,WINDV

>ZZ (242,14)

CHARACTER*1 GUY

C ***** WRITE S CABLE INFORMATION AND DATA (ZZ ARRAY)

IF(WINDS.EQ.1.0.AND.CC.EQ.3.0.AND.IB.EQ.1)Q=Q-QADD

IF(WINDS.EQ.2.0.AND.CC.EQ.1.0.AND.IA.EQ.1)Q=Q-QADD

IF(WINDS.EQ.3.0.AND.CC.EQ.3.0.AND.IB.EQ.NPY)Q=Q-QADD

ZZ (KN, 1) =JNT1

ZZ (KN, 2) =JNT2

ZZ (KN, 3) =FXFL

ZZ (KN, 4)=FYFL

ZZ (KN, 5) =DLDX

ZZ (KN, 6) =DLDY

ZZ (KN, 7) =CC

ZZ (KN, 8) =Q

ZZ (KN, 9) =QADD

ZZ (KN, 10)=SO

ZZ (KN, 11)=FL

ZZ (KN, 12) =HO

ZZ (KN, 13) =FK01

ZZ (KN, 14)=FK02

RETURN

END

C14 Appendix C Program Source Codes

SUBROUTINE S4000

C * SET UP CABLE INFORMATION FOR GUYS

C * BOTTOM LINE GUYS

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWTCC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO ,FKO1

>FK02 ,FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTMAX ,GUY ,H ,HO ,IA ,IB JNT1I

>JNT2 ,KINC ,KN ,NB ,NBA ,NC ,NG I

>NHB ,NP ,NPX ,NPY ,NR ,NREDO ,NSPC I

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q I

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242,14)

CHARACTER*1 GUY

DO 4010 I=I,NPX

KN=KN+I

FL-PH

JNTI-I

JNT2-1000

FXFL=0.0

FYFL--I.0

DLDX=0.0

DLDY=1.0

CC-6.0

CALL S2000

CALL S3000

4010 CONTINUE

C ***** TOP LINE GUYS

DO 4020 I=1,NPX

KN=KN+l

FL=PH

JNT1=NP-NPX+I

JNT2--2000

FXFL=0.0

FYFL=1.0

DLDX=0.0

DLDY=-1.0

CC=7.0

CALL S2000

CALL S3000

4020 CONTINUE

C ***** LEFT LINE GUYS

DO 4030I-I,NPY

KN-KN+I

FL=PH

JNT1=(I-I)*NPX+l

JNT2=-3000

FXFL=-1.0

FYFL=0.0

Appendix C Program Source Codes C15

DLDX=1.0

DLDY=0 .0

CC=8.0

CALL S2000

CALL S3000

4030 CONTINUE

C ***** RIGHT LINE GUYS

DO 4040 I=1,NPY

KN=KN+1

FL=PH

JNTI=I*NPX

JNT2=-4000

FXFL=1.0

FYFL=0.0

DLDX=-1.0

DLDY=0.0

CC=9.0

CALL S2000

CALL S3000

4040 CONTINUE

RETURN

END

C16 Appendix C Program Source Codes

SUBROUTINE S5000

C ***** FROM CABLE INFORMATION CREATE FORCE MATRIX

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO ,FK01 I

>FK02 ,FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTMAX ,GUY ,H ,HO ,IA ,IB ,JNT1

>JNT2 ,KINC ,KN ,NB ,NBA ,NC ,NG

>NHB ,NP ,NPX ,NPY ,NR ,NREDO ,NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242,14)

CHARACTER*1 GUY

DO 5010 J=1,2*NP

F(J)=0.0

5010 CONTINUE

DO 5190 I=1,NC+NG

DELTAL=DELT(I)

CALL $24000(I)

FKO=1.0+(FK01-SO/(FL+DELTAL))/FK02

H=HO*(1.0+FKO*DELTAL/FL)

F(2*JNT1-1)=F(2*JNTI-1)+FXFL*H

IF(JNT2.LT.0)GO TO 5160

F(2*JNT2-1)=F(2*JNT2-1)-FXFL*H

5160 F(2*JNT1)=F(2*JNT1)+FYFL*H

IF(JNT2.LT.0)GO TO 5190

F(2*JNT2)=F(2*JNT2)-FYFL*H

5190 CONTINUE

DO 5200 I=1,2*NP

IF(ABS(F(I)).LT.1.0)F(I)-0.0

5200 CONTINUE

RETURN

END

Appendix C Program Source Codes C17

SUBROUTINE S6000

C ***** SET UP STIFFNESS MATRIX FOR STRUCTURE

COMMON ANGLE BETA ,BW(10),CA ,CAMOWT,CC

>CE ,CN CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG F(128),FK(128,39) FKO ,FK01

>FK02 ,FKP FL ,FS FXFL FYFL ,GAMMA ,GOOD

>GTMAX ,GUY H ,H0 IA IB ,JNT1

>JNT2 ,KINC KN ,NB NBA INC ,NG

>NHB ,NP ,NPX ,NPY NR NREDO ,NSPC

>PA ,PE ,PFB ,PH PI ,PSPC ,PW ,Q

>QADD ,QMAX ,SO ,SMAX SNOW THETA ,TL I

>TMAX ,TMMAX ,U(128),UOLD(128) WINDF ,WINDS ,WINDV I

>ZZ(242,14)

CHARACTER*l GUY

FKP=3.0*PE*PI/PH**3

NBA=4*(NPX+2)-1

NHB=INT(NBA/2)+1

DO 6020 I=1,2*NP

DO 6010 J=I,NBA

FK(I,J)-0.u

6010 CONTINUE

6020 CONTINUE

DO 6030 I=1,2*NP

FK(I,NHB)=FKP

6030 CONTINUE

DO 6545 J-1,2*NP

IF(J.EQ.INT(J/2)*2)GO TO 6305

C ***** X-DIRECTION FORCES

IF(F(J).LE.0.0)GO TO 6130

C ***** POSITIVE Fx

DO 6115 I=1,NC+NG

CALL $24000(I)

IF(JNT1.NE.(J+1)/2)GO TO 6095

IF(JNT2.EQ.-3000)CALL S7000(I,J)

IF(JNT2.EQ.JNT1+1)GO TO 6090

IF(JNT2.EQ.JNT1+NPX-1)CALL S7000(I,J)

6090 GO TO 6115

6095 IF(JNT2.NE.(J+1)/2)GO TO 6115

IF(JNT1.EQ.JNT2-NPX+1)GO TO 6115

IF(JNT1.EQ.JNT2-1)CALL S7000(I,J)

IF(JNT1.EQ.JNT2-NPX-1)CALL S7000(I,J)

6115 CONTINUE

GO TO 6545

6130 IF(F(J).GE.0.0)GO TO 6215

C ***** NEGATIVE Fx

DO 6200 I=I,NC+NG

CALL $24000(I)

IF(JNT1.NE.(J+1)/2)GO TO 6185

IF(JNT2.EQ.-4000)CALL S7000(I,J)

IF(JNT2.EQ.JNT1+NPX+1)CALL S7000(I,J)

C18 Appendix C Program Source Codes

IF(JNT2.EQ.JNT1+NPX-1)GO TO 6180

IF(JNT2.EQ.JNT1+1)CALL S7000(I,J)

6180 GO TO 6200

6185 IF(JNT2.NE.(J+1)/2)GO TO 6200

IF(JNTI.EQ.JNT2-1)GO TO 6200

IF(JNT1.EQ.JNT2-NPX+1)CALL S7000(I,J)

6200 CONTINUE

GO TO 6545

6215 CONTINUE

C REM ***** Fx=0

DO 6290 I=1,NC+NG

CALL S24000(I)

IF(JNT1.NE.(J+1)/2)GO TO 6260

IF(JNT2.EQ.JNT1+1)GO TO 6255

IF(JNT2.EQ.JNT1+NPX-I)CALL S7000(I,J)

IF(JNT2.EQ.JNT1+NPX+1)CALL S7000(I,J)

6255 IF (JNT2.EQ.JTNT1+1)CALL S7V0 -(I,J)

6260 IF(JNT2.NE.(J+1)/2)GO TO 6290

TF(JNT1.EQ.JNT2-NPX+1)GO TO 6285

IF(JNT1.EQ.JNT2-1)CALL S7000(I,J)

IF(JNT1.EQ.JTNT2-NPX-1)CALL S7000(I,J)

IE(JNT1.EQ.JNT2-1)GO TO 6290

6285 IF(JNTI.EQ.JNT2-NPX+1)CALL S7000(I,J)

6290 CONTINUE

GO TO 6545

6305 CONTINUE

C *** Y-DIRECTION FORCES

IF(F(J).LE.0.0)GO TO 6390

C ***** POSITIVE Fy

DO 6375 I=1,NC+NG

CALL S24000(I)

IF(JNT1.NE.J/2)GO TO 6350

IF(JNT2.EQ.-1000)CALL S8000(1.3)

GO TO 6375

6350 IF(JNT2.NE.J/2)GO TO 6375

IF(JTNT1.EQ.JNT2-NPX-l)CALL S8000(I,J)

IF(JTNT1.EQ.JNT2-NPX)CALL S8000(I,J)

IF(JNT1.EQ.JNT2-1)GO TO 6375

IF (JNT1 .EQ.JNT2-NPX+1)CALL S8000 (I, 3)

6375 CONTINUE

GO TO 6545

6390 IF(F(J).GE.O.0)GO TO 6460

C *** NEGATIVE Fy

DO 6445 I=1,NC+NG

CALL S24000(I)

IF(JNT1.NE.J/2)GO TO 6445

IF(JNTZ.EQ.-200C)CALL S8000(I,3)

IF(3NT2.EO.JNT1+1)GO TO 6445

IF(JNT2.EQ.JNTI+NPX-1)CALL 58000(I,J)

IF(JNT2.EQ.JNT1+NPX)CALL S8000(I,J)

Appendix C Program Source Codes 1

IF(JNT2.EQ.JNT1+NPX+1)CALL S8000(I,J)

6445 CONTINUE

GO TO 6545

6460 CONTINUE

C ***Fy=0

DO 6535 I=1,NC+NG

CALL S24000(I)

IF(JNT1.NE.J/2)GO TO 6510

IF(JNT2.EQ.JNT1+1)GO TO 6505

IF(JNT2.EQ.JNTI+NPX-1)CALL S8000 (I,J)

IF(JNT2.EQ.JNT1+NPX)CALL S8000(I,J)

6505 GO TO 6535

6510 IF(JNT2.NE.J/2)GO TO 6535

IF(JNT1.EQ.JNT2-NPX-1)CALL S8000(I,J)

IF(JNTI.EQ.JNT2-NPX)CALL S8000(I,J)

IF(JNT1.EQ.JNT2-1)GO TO 6535

IF(JNT1.EQ.JNT2-NPX+1)CALL S8000(I,J)

6535 CONTINUE

6545 CONTINUE

RETURN

END

C20
Appendix C Program Source Codes

SUBROUTINE S7000(I,J)

C *** MODIFY 'K' MATRIX FOR X-FORCES

COMMON ANGLE ,BETA ,BW(10),CA ,CAM4OWT,CC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO ,FK01

>FKO2 ,FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTMAX ,GUY ,H ,HO ,IA ,IB ,JNT1I

>JNT2 ,KINC ,KN ,NB ,NBA INC ,NG I

>NHB ,NP ,NPX ,NPY ,NR *NREDO ,NSPCI

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW IQ

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX ,TMKAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ (242, 14)

CHARACTER*1 GUY

DELTAL-DELT (I)

FKO=1.0+ (FKO1-SO/ (FL+DELTAL+KINC*ABS (DLDX)))/FKO2

FKCX=HO* (1. +FKO* (DELTAL+KINC*ABS (DLDX))/FL) /KINC

FKC3=O.0

FKC4-0.0

IF(JI1T1.EQ. (J+1)/2)THEN

FKC1=FKCX*ABS (FXFL)

FKC2=-FKC1

ENDIF

IF(JTNT2.LT.0)GO TO 7120

IF(JNT1.EQ. (J+1) /2.AND.JNT2.EQ.JNT1+NPX-1)THEN

FKC3=-FKCX*ABS (FYFL)

FKC4=-FKC3

ENDIF

IF(JNT1.EQ. (J+1)/2.AND.JNT2.EQ.,JNT1+NPX+1)TEIEN

FKC3=FKCX*ABS (FYFL)

FKC4=-FKC3

END IF

IF(JNT2.EQ. (J+1)/2)THEN

FKC2=FKCX*ABS (FXFL)

FKC1=-FKC2

ENDIF

IF(JNT2.EQ. (J+1)/2.AND.JNT1.EQ.JNT2-NPX+1)THEN

FKC3--FKCX*ABS (FYFL)

FKC4=-FKC3

ENDIF

IF(JNT2.EQ. (J+1)/2.AND.JNT1.EQ.JTNT2-NPX-1)THEN

FKC3=FKCX*ABS (FYFL)

FI(C4=-FKC3

ENDIF

7120 JB=~NHB+J-2*JNT1+1

FK (2*JNT1-1, JB) =FK (2*JNT1-1, JB) +FKC1

IF(JNT2.LT.0)GO TO 7170

JB=NHB+J-2*JNT2+1

FK(2*JNT2-1,JB)=FK(2*JNT2-1,JB)+FKC2

JB=NHB+J-2 *JNT1

Appendix C Program Source CodesC2

FK(2*JNT1,JB)=FKe2*JNT1,JB) +FKC3

JB-NHB+J-2*JNT2

FKC2*JTNT2, JB)-FK(2*JNT2,JB) +FKC4

7170 RETURN

END

022 Appendix C Program Source Codes

SUBROUTINE S8000(I,J)

C *** MODIFY 'K' MATRIX FOR Y-FO!RCES

COMMON ANGLE ,BETA ,BW(IO),CA ,CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO ,FK01

>FKO2 ,FKP ,FL ,FS FEXFL ,FYFL ,GAMMA ,GOOD

>GTMAX ,GUY ,H ,HO ,IA ,IB ,JNT1

>JNT2 ,KINC ,KN ,NB ,NBA ,NC ING

>NHB ,NP ,NPX ,NPY ,NR ,NREDO ,NSPC

>PA ,PE ,PFB ,PH 'PI ,PSPC ,PW IQ

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS WNINDV

>ZZ (242, 14)

CfIARACTER*l GUY

DELTAL=DELT (I)

FK0=1 .0+ (FK01-SO/ (FL+DELTAL+KINC*ABS (DLDY))) /FKO2

FKCY=H0* (1. 0+FKC* (DELTAL+KINC*ABS (DLDY))/FL) /KINC

FKC3=0.0

FKC4=0 .0

IF (JNT1 .EQ.J/2) THEN

FKC1=FKCY*ABS (FYFL)

FKC2--FKC1

ENDIF

IF(JNT2.LT.0)GO TO 8120

IF(JNT1.EQ.J/2.AND.JNT2.EQ.JNT1+NPX-1)THEN

FKC3=-FKCY*ABS (FXFL)

FKC4=-FKC3

ENDIF

IF(JNT1.EQ.J/2.AND.JNT2.EQ.JNT1+NPX+1)THEN

FKC3=FKCY*ABS (FXFL)

FKC4=-FKC3

ENDIF

IF (JNT2.EQ.J/2)THEN

FKC2-FKCY*ABS (FYFL)

FKC1--FKC2

ENDIF

IF(JNT2.EQ.J/2.AND.JNT1.EQ.JNT2-NPX+1)THEN

FKC3--FKCY*ABS (FXFL)

FKC4=-FKC3

ENDIF

IF(JNT2.EQ.J/2.AND.JNT1.EQ.JNT2-NPX-I)THEN

FKC3=FKCY*ABS (FXFL)

FKC4=-FKC3

ENDIF

8120 JB=NHB+J-2*JNTI

FK(2*JNT1,JB)=FK(2*JNT1,JB) +FKC1

IF(JNT2.LT.0)GO TO 8170

JB-NHB+J-2 *JNT2

FK(2*JNT2,JB)=FK(2*JNT2,JB) +FKC2

JTB-NHB+J-2*JNT1+1

Appendix C Program Source CodesC2

FK (2*,JNTl-l,JTB) =FK (2*JNTl1l,,JB) +FKC3

JB=NHB+J-2 *JNT2+1

FK(2*JNT2-1,JB)=FK(2'JNT2-1,JB) +FKC4

8170 RETURN

END

024 Appendix C Program Source Codes

SUBROUTINE S9000

C ***** GAUSSIAN ELIMINATION

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWTCC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO ,FK01

>FK02 ,FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA GOOD I

>GTMAX ,GUY ,H ,H0 ,IA ,IB ,JNTI

>JNT2 ,KINC ,KN ,NB ,NBA ,NC ,NG

>NHB ,NP ,NPX ,NPY ,NR ,NREDO ,NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q I

>%jADD ,QMAX ,S0 ,SMAX ,SNOW ,THETA ,TL I

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242,14)

CHARACTER*1 GUY

NR=2*NP

DO 9010 I=1,NR

U(I)-F(I)

9010 CONTINUE

CALL SOLVE(NR, NBA, NHB, FK,U)

RETURN

END

Appendix C Program Source Codes C25

SUBROUTINE SI0000(EMAX)

C ***** COMPARE NEW U WITH OLD U

COMMON ANGLE ,BETA ,BW(10),CA CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) DELTALDLDX

>DLDY ,DRAG ,F(128),FK(128,39) FK0 FK01

>FK02 ,FKP ,FL ,"S ,FXFL FYFL G4?MI. GOOD

>GTMAX ,GUY ,H ,H0 ,IA IB JNT1

>JNT2 ,KINC ,KN ,NB ,NBA INC ING

>NHB ,NP ,NPX ,NPY ,NR NREDO NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW IQ

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA TL

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS WINDV

>ZZ(242,14)

CHARACTER*1 GUY

GOOD-I.0

DO 10010 I=1,2*NP

DIFF-ABS(UOLD(I)-U(I)ý

IF(ABS(UOLD(I)-U(I)).GT.EMAX)THEN

GOOD-O.0

GO TO 10100

ENDIF

10010 CONTINUE

GO TO 10180

10100 DO 10110 I-1,2*NP

U(I)=(UOLD(I)+U(I))/2.0

UOLD(I)-U(I)

10110 CONTINUE

10180 RETURN

END

C26 Appendix C Program Source Codes

SUBROUTINE SI1000

C ***** CALCULATE DELTAL FOR EACH CABLE

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FK0 ,FKO1

>FK02 ,FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA GOOD

>GTMAX ,GUY ,H ,HO ,1A ,IB ,JNT1

>JNT2 ,KINC ,KN ,NB ,NBA ,NC ,NG

>NHB ,NP ,NPX ,NPY ,NR ,NREDO ,NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242,14)

CHARACTER*I GUY

DO 11010 I-l,NC+NG

CALL $24000(I)

NSUBl=JNT1*2

NSUB2=JNT2*2

IF(JNT2.LT.0)THEN

DELTAL=U(NSUB1-1)*DLDX+U(NSUBl)*DLDY

ELSE

DELTAL-(U(NSUB1-1)-U(NSUB2-1))*DLDX+(U(NSUBI)-U(NSUB2))*DLDY

ENDIF

DELT(I)-DELTAL

11010 CONTINUE

RETURN

END

Appendix C Program Source Codes C27

SUBROUTINE S12000

COMMON ANGLE BETA BW(10),CA CAMOWT,CC

>CE CN CWT DELT(242) DELTAL,DLDX

>DLDY DRAG F(128),FK(123,39) FKO ,FK01

>FK02 FKP FL FS FXFL FYFL ,GAMMA ,GOOD

>GTMAX GUY H HO IA IB ,JNT1

>JNT2 KINC KN NB NBA NC ,NG

>NHB NP NPX NPY NR NREDO ,NSPC

>PA PE PFB PH 'PI ,PSPC ,PW IQ

>QADD QMAX SO SMAX SNOW THETA ,TL I

>TMAX TMMAX U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242, 14)

CHARACTER*1 GUY

C * DEFINE FUN;CTIONS HYPERBOLIC SINE, HYPERBOLIC COSINE

C * AND INVERSE HYPERBOLIC SINE

FNSINH(X)=(EXP(X)-EXP(-X))/2.0

FNCOSH(X)=(EXP(X)+EXP(-X))/2.0

FASINH(X)=ALOG(X+SQRT(X**2+1.0))

C ***** CHECK TENSIONS

GOOD=1.0

DO 12010 I=1,NC+NG

CALL $24000(I)

DELTAL=DELT(I)

FKO=1.0+(FK01-S0/(FL+DELTAL))/FK02

H=HO*(I.0+FKO*DELTAL/FL)

BETA=Q*(FL+DELTAL)/2.0/H

IF(CC.LE.5.0)THEN

THETA=0.0

ELSE

THETA=0.785398163

ENDIF

X=TAN(THETA)*BETA/FNSINH(BETA)

GAMMA=FASINH(X)

X=GAMMA+BETA

TI=HO*FNCOSH(X)

X=GAMMA-BETA

T2=HO*FNCOSH (X)

IF(TI.GT.TMAX.OR.T2.GT.TMAX)THEN

GOOD=0 .0

RETURN

ENDIF

12010 CONTINUE

RETURN

END

C28 Appendix C Program Source Codes

SUBROUTINE S13000

COMMON ANGLE ,BETA ,BW(10OCA ,CAM4OWT,CC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO ,FK01

>FKO2 ,FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTKAX ,GUY ,H ,HO ,IA .18 ,JNT1

>JNT2 ,KINC ,KN ,NB ,NBA INC ING

>NHB ,NP ,NPX ,NPY ,NR ,NREDO ,NSPC

>PA ,PE ,PFB ,PH 'PI ,PSPC ,PW IQ

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX ,TMMAX Ut(128),UOLD(128) ,WINDF WI.INDS ,WINDV

>ZZ(242, 14)

CHARACTER*1 GUY

C DEFINE FUNCTIONS HYPERBOLIC SINE, HYPERBOLIC COSINE

C AND INVERSE HYPERBOLIC SINE

FNSINHCX)=(EXP(X)-EXP(-l*X))/2.0

FNCOSHCX) =(EXPCX) +EXP (-1*X))/2.0

FASINH(X)=ALOG(X+SQRT(X**2+1.0))

C ***** CHECK POLE STRESSES AT BASE

GOOD-1 .0

DO 13200 I=1,NP

V=0.0

NSUB-I*2

FADD=FKP*SQRT (U (NSUB-1) **2+U CNSUB) **2)

DO 13190 J=1,NC+NG

CALL S24000(J)

IF (JNT1 .NE.J.AND.JNT2.NE.J)GO TO 13190

IF (CC.LE.5 .0)THEN

V=V+0. 5*Q*FL

GO TO 13190

ENDIF

DELTAL-DELT (J)

FKO=1 .0+ (FKO1-S0/ (FL+DELTAL))/FK02

H=HO* (1. 0+FKO*DELTAL/FL)

BETA=Q* (FL+DELTAL) /2.0/H

IF (CC.LE.5.0)THEN

THETA=0. 0

ELSE

THETA=. 785398163

END IF

X-TAN (THETA) *BETA/FNSINH (BETA)

GAMMA=FASINH CX)

X-GAMMA+ BETA

V-V+HO*FNSINH CX)

13190 CONTINUE

PSTRES=V/PA+FADD*PH*PW/2/PI+V*SQRT(U(2*I-1)**2+U(2*I)**2)*PW/2/PI

IF (PSTRES.GT.PFB) THEN

GOOD-0 .0

RE TURN

ENDIF

Appendix C Program Source Codes 029

13200 CONTINUE

RETURN

END

C30 Appendix C Program Source Codes

SUBROUTINE S14000

C ***** MODIFY 'F' MATRIX FOR WIND FROM BOTTOM OF PLAN

COMMON ANGLE ,BETA ,BW(10),CA CAMOWT,CC

>CE CN ,CWT ,DELT(242) DELTAL,DLDX

>DLDY DRAG F(128),FK(128,39) FKO FK01

>FK02 FKP FL ,FS FXFL FYFL GAMMA GOOD

>GTMAX GUY H ,HO IA IB JNTI

>JNT2 KINC KN ,NB NBA INC ING

>NHB NP NPX ,NPY NR NREDO NSPC

>PA PE PFB ,PH 'PI ,PSPC PW ,Q I

>QADD ,QMAX SO ,SMAX SNOW THETA TL I

>TMAX ,TMMAX U(128),UOLD(128) WINDF ,WINDS ,WINDV

>ZZ(242,14)

CHARACTER*1 GUY

WINDF-DRAG*0.5*0.0024*WINDV**2*PH*PSPC/144.0

DO 14010 I=1,NSPC

NFSB-2*(I+1)

F(2*I)=F(2*I)+WINDF/4.0

F(NFSB)-F(NFSB)+WINDF/4.0

14010 CONTINUE

RETURN

END

Appendix C Program Source Codes C31

SUBROUTINE S15000

C ***** MODIFY 'F' MATRIX FOR WIND FROM LEFT OF PLAN

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWT,CC

>CE CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY DRAG ,F(128),FK(128,39) ,FKO ,FK01

>FK02 FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTMAX GUY ,H ,HO ,IA ,IB ,JNT1I

>JNT2 KINC ,KN ,NB ,NBA ,NC ,NG I

>NHB NP ,NPX ,NPY ,NR ,NREDO ,NSPC I

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q

>QADD QMAX ,SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242, 14)

CHARACTER*l GUY

DO 15010 I=1,NB

NFSBI=2*NPX*(1-1)+I

NFSB2=2*NPX*I+I

WINDF=DRAG*0.5*0.0024*WINDV**2*PH*BW(I)/144.0

F(NFSB1)=F(NFSB1)+WINDF/4.0

F(NFSB2)=F(NFSB2)+WINDF/4.0

15010 CONTINUE

RETURN

END

C32 Appendix C Program Source Codes

SUBROUTINE S16000

C ***** MODIFY 'F' MATRIX FOR WIND FROM TOP OF PLAN

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO ,FK01

>FK02 ,FKP ,FL ,FS ,FXFL ,FYFL GAMMA GOOD

>GTMAX ,GUY ,H ,HO ,IA ,IB JNT1

>JNT2 ,KINC ,KN ,NB ,NBA ,NC ING

>NHB ,NP ,NPX ,NPY ,NR ,NREDO NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC PW IQ

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA TL

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF WINDS ,WINDV

>ZZ(242,14)

CHARACTER*1 GUY

WINDF=DRAG*0.5*0.0024*WINDV**2*PH*PSPC/144.0

DO 16010 I=1,NSPC

NFSB1=2*(NP-NPX)+2*I

NFSB2=2*(NP-NPX)+2*(I+1)

F(NFSBI)=F(NFSB1)-WINDF/4.0

F(NFSB2)-F(NFSB2)-WINDF/4.0

16010 CONTINUE

RETURN

END

Appendix C Program Source Codes C33

SUBROUTINE S17000

C ***** Q ADD FOR WIND FROM TOP OR BOTTOM OF PLAN

COMMON ANGLE ,BETA ,BW(10),CA CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) FKO FK01

>FK02 ,FKP ,FL ,FS ,FXFL -FYFL GAMMA ,GOOD

>GTMAX ,GUY ,H ,HO ,IA ,IB JNT1

>JNT2 ,KINC ,KN ,NB ,NBA INC ING

>NHB ,NP ,NPX ,NPY ,NR NREDO ,NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242,14)

CHARACTER*1 GUY

WINDF-DRAG*0.5*0.0024*WINDV**2*PSPC*PH/144.0

QADD=WINDF/FL

RETURN

END

034 Appendix C Program Source Codes

SUBROUTINE S18000

C -**** Q ADD FOR WIND FROM LEFT OF PLAN

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWT,CC

>CE CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY DRAG ,F(128),FK(128,39) ,FKO ,FK01

>FK02 FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTMAX GUY ,H ,HO ,IA ,IB ,JNT1I

>JNT2 KINC ,KN ,NP ,NBA ,NC ,NG

>NHB NP ,NPX ,NPY ,NR ,NREDO ,NSPC

>PA PE ,PFB ,PH ,PI ,PSPC ,PW ,Q

>QADD QMAX ,SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242 14)

CHARACTER*l GUY

WINDF=DRAG*0.5*0.0024*WINDV**2*BW(IB)*PH/144.0

QADD=WINDF/FL

RETURN

END

Appendix C Program Sou-e Codes C35

SUBROUTINE S19000

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWT, CC ,

>CE ,CN ,CWT ,DELT(242) ,DLLTAL, DLDX,

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO FK01,

>FK02 ,FKP FL FS FXFL FYFL GAMMA ,GOOD,

>GTMAX ,GUY H HU IA IB JNT1

>JNT2 ,KINC KN NB NBA INC ING I

>NHB ,NP NPX NPY NR NREDO NSPC I

>PA ,PE PFB PH 'PI 'PSPC 'PW IQ I

>QADD ,QMAX SO SM.AX SNOW THETA TL I

>TMAX ,TMMAX U(128),UOLD(128) WINDF WINDS ,WINDV,

>ZZ(242,14)

CHARACTER*I GUY

C ***DEFINE FUNCTIONS HYPERBOLIC SINE, HYPERBOLIC COSINE

C ***AND INVERSE HYPERBOLIC SINE

FNSINH(X)=(EXP(X)-EXP(-I*X))/2.0

FNCOSHi(X)=(EXP(X)+EXP(-I*X))/2.0

FASINH(X)=ALOG(X+SQRT(X**2+I.0))

C ***** MAXIMUM MOMENT

DO 19200 I=1,NP

V=0.0

FADD-FKP*SQRT(U(2*I-I)**2+U(2*I)**2)

DO 19190 J=1,NC+NG

CALL $24000(I)

IF(JNT1.NE.J.AND.JNT2.NE.J)GO TO 19190

IF(CC.LE.5.0)THEN

V=V+.5*Q*FL

GO TO 19190

ENDIF

DELTAL-DELT(J)

FK0=I.0+(FK01-S0/(FL+DELTAL))/FK02

H=HO*(I+FKO*DELTAL/FL)

BETA-Q*(FL+DELTAL)/2.0/H

IF(CC.LE.5.0)THEN

THETA-0.0

ELSE

THETA=.785398163

ENDIF

X=TAN(THETA)*BETA/FNSINH(BETA)

GAMMA=FASINH(X)

X-GAMMA+BETA

V=V+H0*FNSINH(X)

19190 CONTINUE

TMOM=V*SQRT(U(2*I-I)**2+U(2*I)**2)+FADD*PH

IF(TMOM.GT.TMMAX)TMMAX=TMOM

19200 CONTINUE

RETURN

END

C36 Appendix C Program Source Codes

SUBROUTINE 520000

COMMON ANGLE BETA ,BW(10),CA ,CAMOWT,CC

>CE CN CWT ,DELT(242) ,DELTAL,DLDX

>DLDY DRAG F(128),FK(128,39) ,FKO ,FK01

,FK02 FKP FL ,FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTMAX GUY H ,HO ,IA ,IB ,JNT1I

>JNT2 KINC KN ,NB ,NBA ,NC ,NG I

>NHB NP NPX ,NPY ,NR ,NREDO ,NSPC I

>PA PE PFB ,PH ,PI ,PSPC ,PW ,Q I

>QADD QMAX SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX TMMAX U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242, 14)

CHARACTER*l GUY

C * DEFINE FUNCTIONS HYPERBOLIC SINE, HYPERBOLIC COSINE

C ***** AND INVERSE HYPERBOLIC SINE

FNSINH(X)-(EXP(X)-EXP(-l*X))/2.0

FNCOSH(X)=(EXP(X)+EXP(-I*X))/2.0

FASINH(X)=ALOG(X+SQRT(X**2+1.0))

***** MAXIMUM GUY TENSIONS

DO 20010 I-1,NC

CALL S24000(I)

20010 CONTINUE

DO 20020 I=NC+1,NC+NG

CALL S24000(I)

DELTAL-DELT(I)

FK0-1.0+(FK01-S0/(FL+DELTAL))/FK02

H=HO*(1.0+FK0*DELTAL/FL)

BETA-Q*(FL+DELTAL)/2.0/H

THETA-.785398163

X-TAN(THETA)*BETA/FNSINH(BETA)

GAMMA-FASINH(X)

X-GAMMA+BETA

GT1=HO*FNCOSH(X)

X-GAMMA-BETA

GT2=HO*FNCOSH(X)

IF(GT1.GT.GTMAX)GTMAX-GT1

IF(GT2.GT.GTMAX)GTMAX=GT2

20020 CONTINUE

END

Appendix C Program Source Codes C37

SUBROUTINE S21000(EMAX)

C ***** REDO

COMMON ANGLE BETA ,BW(10),CA ,CAMOWT,CC

>CE ,CN CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG F(128),FK(128,39) ,FK0 ,FKO1

>FK02 ,FKP FL ,FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTMAX ,GUY H ,HO ,IA ,IB ,JNT1

>JNT2 ,KINC KN ,NB ,NBA ,NC ,NG

>NHB ,NP ,NPX ,NPY ,NR ,NREDO ,NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242,14)

CHARACTER*I GUY

DO 21200 KREDON-1,NREDO

WINDS=KREDON

KINC-16

NPX-NSPC+l

NPY-NB+l

NP=NPX*NPY

DO 21080 I=1,2*NP

U(I)-0

21080 CONTINUE

CALL SlOO$

IF(GUY.EQ.'Y')CALL S4000

21090 CALL S5000

IF(WINDS.EQ.1.0)THEN

CALL S14000

ELSE

CALL S15000

ENDIF

CALL S6000

CALL S9000

CALL S10000(EMAX)

IF(GOOD.EQ.1.0)GO TO 21190

CALL S!1000

KINC=INT(KINC/2)

IF(KINC.EQ.0)KINC-1

GO TO 21090

21190 CALL S19000

IF(GUY.EQ.'Y')CALL S20000

21200 CONTINUE

RETURN

END

C38 Appendix C Program Source Codes

SUBROUTINE S22000

C ***** CREATE FINAL OUTPUT FILE (DESOUTPT.DAT)

COMMON ANGLE ,BETA ,BW(10),CA ,CAMOWT,CC

>CE ,CN ,CWT ,DELT(242) ,DELTAL,DLDX

>DLDY ,DRAG ,F(128),FK(128,39) ,FKO ,FKO1

>FK02 ,FKP ,FL ,FS ,FXFL ,FYFL ,GAMMA GOOD

>GTMAX ,GUY ,H ,HO ,IA ,IB ,JNT1I

>JNT2 ,KINC ,KN ,NB ,NBA ,NC ,NG

>NHB ,NP ,NPX ,NPY ,NR ,NREDO ,NSPC

>PA ,PE ,PFB ,PH ,PI ,PSPC ,PW ,Q

>QADD ,QMAX ,SO ,SMAX ,SNOW ,THETA ,TL I

>TMAX ,TMMAX ,U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242,14)

CHARACTER*1 GUY

OPEN (UNIT-16,FILE='DESOUTPT.DAT')

WRITE(16,22999)NSPC

22999 FORMAT(I5)

WRITE(16,22998)PSPC

22998 FORMAT(Fl5.4,2110,Fl0.2)

WRITE(16,22998)TMMAX

WRITE(16,22998)GTMAX

C DO 22140 I=1,NPY

C DO 22130 J=1,NC

C CALL S24000(J)

C IF(JNT1.EQ. (I-1)*NPX+1.AND.CC.EQ.3.0)THEN

C WRITE(16,22998)S0, JNT1,JNT2,CC

C GO TO 22140

C ENDIF

C IF(Jl4T1.EQ.(I-I)*NPX+1.AND.CC.EQ.4.0)THEN

C WMiTEti6,22998)SO,JNT1,JNT2,CC

C GO TO 22140

C ENDIF

22130 CONTINUE

22140 CONTINUE

C DO 22230 I=1,NB

C DO 22220 J-1,NC

C CALL S24000(J)

C IF(JNT1.EQ. (I-I)*NPX+1.AND.CC.EQ.1.0)WRITE(16,22998)S0,JNT1,

C 1 JNT2,CC

C IF(JNT1.EQ. (I-1)*NPX+2.AND.CC.EQ.2)THEN

C WRITE(16,22998)SO,JNT1,JNT2,CC

C GO TO 22230

C ENDIF

22220 CONTINUE

22230 CONTINUE

DO 22240 I=1,NC

CALL $24000(I)

WRITE(16,22998)SO,JNT1,JNT2,CC

22240 CONTINUE

CALL $24000(I)

Appendix C Program Source Codes C39

WRITE(16,22998)SO,JNT1,JNT2,CC

CLOSE (UNIT=16)

RETURN

END

C40 Appendix C Program Source Codes

SUBROUTINE S24000(I)

COMMON ANGLE BETA BW(10),CA ,CAMOWT,CC

>CE CN CWT DELT(242) ,DELTAL,DLDX

>DLDY DRAG F(128),FK(128,39) ,FKO ,FK01

>FK02 FKP FL FS ,FXFL ,FYFL ,GAMMA ,GOOD

>GTMAX GUY H ,HO ,IA ,IB ,JNT1

>JNT2 KINC KN NB ,NBA ,NC , NG

>NHB NP NPX NPY ,NR ,NREDO ,NSPC

>PA PE PFB PH ,PI ,PSPC ,PW IQ I

>QADD QMAX SO SMAX ,SNOW ,THETA ,TL I

>TMAX TMMAX U(128),UOLD(128) ,WINDF ,WINDS ,WINDV

>ZZ(242 14)

CHARACTER*1 GUY

JNT1-ZZ (I,l)

JNT2-ZZ (1,2)

FXFL-ZZ (1,3)

FYFL-ZZ (1,4)

DLDX-ZZ (1,5)

DLDY=ZZ (1,6)

CC-ZZ (I, 7)

Q-ZZ (I,8)

QADD-ZZ (1, 9)

SO-ZZ(I, 10)

FL-ZZ(I, 11)

HO-ZZ(I, 12)

FKO1-ZZ (I, 13)

FK02-ZZ(I, 14)

RETURN

END

Apperndix C Program Source Codes C41

SUBROUTINE SOLVE(NR, NB, NHB,A,B)

DIMENSION A(128,I),B(l)

C This subroutine will efficiently solve simultaneous equations with

C banded coefficients. Such a system of equations is illustrated below.

C

C A(l,I) A(1,2) A(1.3) 0 0 0 0 0

C A(2,1) A(2,2) A(2,3) A(2,41 0 0 0 0

C A(3, 1) A(3,2) A(3,3) A(3,4) A(3, 5) 0 0 0

C 0 A(4,2) A(4,3) A(4,4) A(4,5) A(4,6) 0 0

C 0 0 A(5,3) A(5,4) A(5, 5) A(5, 6) A(5, 7) 0

C 0 0 0 A(6,4) A(6,5) A(6,6) A(6,7) A(6,8)

C 0 0 0 0 A(7,5) A(7,6) A(7,7) A(7,8)

C 0 0 0 0 0 A(8,6) A(8,7) A(8,8)

C

C The above coefficients would be stored in an (8,5) array as follows:

C

C 0 0 A(1,l) A(1,2) A(1,3)

C 0 A(2,1) A(2,2) A(2,3) A(2,4)

C A(3,1) A(3,2) A(3,3) A(3,4) A(3,5)

C A(4,2) A(4,3) A(4,4) A(4,5) A(4,6)

C A(5,3) A(5,4) A(5,5) A(5,6) A(5,7)

C A(6,4) A(6,5) A(6,6) A(6,7) A(6,8)

C A(7,5) A(7,6) A(7,7) A(7,8) 0

C A(8,6) A(8,7) A(8,8) 0 0

C

C NB - B.AND. WIDTH

C NR - NUMBER OF EQUATIONS

C NRA- ROW DIMENSION OF THE 'A' MATRIX

C

C The band width should be the largest value calculated on any Ith row of

C the following.

C 2*(I-Jmin)+l or 2*(Jmax-I)+l

C

C The band width should always be an odd number.

C

C The (I,I) coefficient should be stored in the banded array at

C location (I,NHB) where NHB is INT(NB/2)+l

C The coefficients of the equations arr'y, A, should be dimensioned

C A(NR,NB). The right hand side of the equations array, B, should be

C dimensioned B(NR). The solution will be left in the array B. The

C array A and the original array B will be destroyed.

C

DO 40550 KP-l,NR

DO 40540 I=1,NHB

IP=KP+I-1

JP-NHB-I+I

IF(IP.GT.NR)GO TO 40540

DIV-A(IP,JP)

IF(DIV.EQ.0.0)GO TO 40540

DO 40510 J=1,NB

C42 Appendix C Program Source Codes

A(IP,J) -A(IP,J) /DIV

40510 CONTINUE

B(IP)=B(IP) /DIV

IF(IP.EQ.KP)GO TO 40540

DO 40520 J-1,NB

IF(J-I+1.LT.1)GO TO 40520

A(IP, J-I+1) -A (IP, J-I+1) -A(KP, J)

40520 CONTINUE

B(IP)=B(IP) -B(KP)

40540 CONTINUE

40550 CONTINUE

DO 40620 IB=1,NR

I-NR-IB+I

DO 40610 JB-2,NHB

IF(I+JB-l.GT.NR)GO TO 4062C

B(I)-B(I)-A(I,NHB+JB-1)NUE(I+JB-1)

40610 CONTINUE
40620 CONTINUE

RETURN

END

Appendix C Program Source Codes C43

The source codes for the DRAW routine are provided below:

CHARACTER*80 NAME

CHARACTER*1 GUY,F

DIMENSION Y(20),X(20),SCALES (16)

DATA NOSCL,SCALES,SDIV/16, 16.0,15.0, 14.0,13.0,12.0,11.0, 10.0,9.0,

>8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0,128.0/

READ(5, 1)IPORT,MODEL,XSIZE,YSIZE

CALL PLOTS (0,IPORT, MODEL)

READ (5, 4)NAME

1 FORMAT(2I5,2F10.1)

4 FORMAT(A80)

OPEN (UNIT-8,FILE-'DESINPUT.DAT' ,STATUS='OLD')

Y(1)=0.0

READ(8, *)NBAYS

READ(8,*)(Y(I+1J,I-1,NBAYS)

DO 5 I=1,NBAYS

5 Y (I+1) =Y (I+1) +Y (I)

READ (8, *)WDTH

READ (8, *) H IGH

READ (8,11) F

READ (8, 11) F

READ (8,11) F

11 FORMAT(A1)

READ(8, 11)GUY

IND=O

IF (GUY.EQ. 'Y') IND=1

CLOSE (UNIT-8)

OPEN (UNIT-8,FILE='DESOUTPT.DAT' ,STATtIS='OLD')

READ (8, *)NSPACE

READ (8, *) SPACE

CLOSE (UNIT-8)

SPACE=SPACE/12.0

X (1)=0 .0

DO 10 I=1,NSPACE

X(I+1)=X (I) +SPACE

10 CONTINUE

HGTH=Y (NBAYS+1) +2. 0*IND*HIGkI

WDTH-X (NSPACE+1) +2. 0*IND*HIGH

CALL BORDER(YSIZE,XSIZE)

DO 20 I=1,NOSCL

IF(EIGTH*SCALES(I)/SDIV+2.25.LT.YSIZE.AND.WDTH*SCALES(I)/SDIV+2.0

>.LT.XSIZE)GO TO 30

20 CONTINUE

30 SFFAC-SCALES(I) /SDIV

XO= (XSIZE-WDTH*SFFAC) /2.0+0.5

YO-(YSIZE-1.25-HGTH*SFFAC) /2.0+1.25

XE-XO+WDTH *SEFAC

DO 40 I-1,NBAYS+1

YW=YO+IND*HIGH*SFFAC+Y (I) *SFFAC

C44 Appendix C Program Source Codes

CALL PLOT(XO,YW,3)

CALL PLOT(XE,YW,2)

40 CONTINUE

YE-YO+HGTH*SFFAC

DO 50 I-1,NSPACE+i

XW-XO+IND*HIGH*SFFAC+X (I) *SFFAC

CALL PLOT(XW,YO, 3)

CALL PLOT(XW,YE,2)

50 CONTINUE

DO 60 I-i,NSPACE

DO 60 J-i,NBAYS

XL=XO+IND*HIGH*SFFAC+X (I) *SFFAC

YB=YO+IND*HIGHkSFFAC+Y (J) *SFFA

XR=XO+IND*HIGH*SFFAC+X(I+1) *SFFAC

YT=YO+IND*HIGH*SFFAC+Y (J+1) *SFFAC

CALL PLOT(XL,YB, 3)

CALL PLOT(XR,YT,2)

CALL PLOT(XL,YT,3)

CALL PLOT (XR, YB, 2)

CALL CIRCLE (XL, YB,0.5, SFFAC, 1)

IF(J.EQ.NBAYS)CALL CIRCLE(XL,YT,0.5,SFFAC,1)

IF(I.EQ.NSPACE)CALL CIRCLE(XR,YB,0.5,SFFAC,1)

IF(I.EQ.NSPACE.AND.J.EQ.NBAYS)CALL CIRCLE(XR,YT,0.5,SFFAC,l)

I' CI.EQ. 1) THEN

XD-XO-0 .25

D-Y(3+1) -Y(J)

CALL DIMLIN(XD,YB,XD,YT, 1,0,1,1,-i, 0.25, 1.0, 0.1, 0.i,D,0.i)

ENDIF

IF (J.EQ. 1) THEN

YD=YO-0 .25

D-X(I+i)-X(I)

CALL DIMLIN(XL,YD,XR,YD, 1,0,-i, 1,-i, 0.25,i.0,0.1,0.i,D, 0.1)

ENDIF

60 CONTINUE

CALL SYMBOL(O.5,0.5, 0.i,NAME,0.0,80)

CALL PLOT(0.0,0.0, 999)

STOP

END

Appendix C Program Source CodesC4

SUBROUTINE BORDER(YSIZE, XSIZE)

XLEFTO .25

XRGHT-XS IZE-XLEFT

YBOT-O.25

YTOP-YSIZE-YBOT

CALL PLOT(XLEFT,YBOT,3)

CALL PLOT(XLEFT,YTOP,2)

CALL PLOT(XRGHT,YTOP,2)

CALL PLOT (XRGHT, YBOT, 2)

CALL PLOT(XLEFT,YBOT,2)

RETURN

END

C46 Appendix C Program Source Codes

SUBROUTINE CIRCLE(XC,YC,RAD, SF, IGILL)

COMMON/PORT/ IPORT, MODEL, SCL

CHARACTER* 32 ALPHA

CHARACTER*80 OUTSTR

DIMENSION X(36),Y(36)

RADIUS=RAD*SF

ARCINC-3 .1415926/18.0

DO 18 1-1,36

ARC=ARCINC* I

X(I) -XC+RADIUS*COS (ARC)

Y(I) =YC+RADIUS*SIN (ARC)

18 CONTINUE

IF (IGILL.EQ.0) THEN

CALL PLOT(X(36),Y(36),3)

DO 20 1-1, 36

CALL PLOT(X(I),Y(I),2)

20 CONTINUE

ELSE

CALL FILL(X,Y,36)

ENDIF

RETURN

END

Appendix C Program Source Codes C47

SUBROUTINE DIMLIN(XI,YI,X2,Y2,LNTYP,IHD,IOL,ILA,IRA,

>SPACE, SF,HGTHR, XSTEPR, DIM, TOP)

CHARACTER*13 STR

DIMENSION X(17),Y(17)

C X1,Y1 LEFT END POINT (PLOT COORDINATES)

C X2,Y2 RIGHT END POINT (PLOT COORDINATES)

C

C 6-0

C LNTYP I< .. .>1 =1

C 3-0

C ->1 1<-- =2

C 3-0

C ->i I<- =3

C

C IHD 0=NO HEADERS 1=HEADERS

C

C IOL 16-0 =+i

C i< ->I

C I I

C I I

C

C I I

C I 16-0 I

C 1< ->I

C

C

C ARROW HEADS > = -1 <= +1 0 =NO ARROW HEAD

C ILA LEFT END ARROW HEAD

C IRA RIGHT END ARROW HEAD

C

C SPACE DISTANCE FROM DRAWING LINE TO DIMENSION LINE

C SF TEXT SCALE FACTOR

C HGTH CHARACTER HEIGHT

C XSTEP CHARACTER SPACE WIDTH

C DIM ANNOTATION LENGTH (REAL WORLD)

C

C48 Appendix C Program Source Codes

C POINT LOCATIONS

C

C

C 6 15

C 8- 1 5 9- 14 17

C 7-3< 12<-16

C 1 4 1 13

C

C

C

C 2 11

C

C 1 10

C

C THE SYMBOL IS CONSTRUCTED HORIZONTALLY AND ROTATED ABOUT

C POINT 1. UNNEEDED PARTS ARE OMITTED.

C

HGTH=HGTHR* 5F

RAD=HGTHR/4 .0

XSTEP-XSTEPR

CALL FOOTS (DIM, STR, NC)

DIST-SQRT((Y2-Y1)**2+(X2-X1)**2)

IF (DIST.LE.0.0)RETURN

ALPHA-ATAN2 (Y2-Y1,X2-X1)

DEGR-ALPHA*180. 0/3.1415926

XM()-0. 0

YM()-0 .0

X (2) -X (1)

Y(2)=Y (1)+SF*IOL

X (6) -X (1)

YC6)-Y C1)+ (SPACE+TOP) *SF*IOL

X (3) -X (6)

Y (3) -Y (6) -SF*IOL*TOP

X(4)-X(3)+SF*ILA

Y(4)-Y(3) -0.34*SF

X(5)-X(3)+SF*ILA

Y(5)-Y (3)+0.34*SF

X(7)-X(3)-4.0*SF

Y(7)-Y(3)

X(S)-X(3)-(NC*XSTEP+1.5) *SF

Y (8) -Y (3) +0. 3*SF

IF(LNTYP.EQ.2)X(7)-X(8)

X (9) -DIST/2 .0-NC/2 .0*XSTEP*SF

Y (9) -Y (3) +HGTHR*SF

X(10)-X(l)+DIST

Y(10)-0.0

X (11) -X (10)

Y(Il)-Y (10) +SF*IOL

X (15) -X (10)

Y(15)-Y(10)+(SPACE+TOP)*SF*IOL

Appendix C Program Source CodesC4

X (12) -X (15)

Y(12)-Y (15) -SF*IOL*TOP

X(13)-X(12) +SF*IRA

X(14)-X(12)+SF*IRA

Y(14)-Y(12) +0.34*SF

X(17)-X(12)+1.5*SF

Y(17)-Y(12) +0.3*SF

X (16) -X (12) +4. 0*SF

Y(16)=Y(12)

IF(LNTYP.EQ.3)X(16)=X(17)+NC*XSTEP*SF

DO 10 1-2,17

BETA-ATAN2(Y(I) ,X(I))

DIST-SQRT(Y(I)**2+X(I) **2)

AI4GL-ALPHA+BETA

X(I)=X1+DIST*COS (ANGL)

Y (I) -YI+DIST*SIN (ANGL)

10 CONTINUE

X (1) -Xl

Y (1)-Y1

IF (IHD.NE.0) THEN

CALL PLOT(X(2),Y(2),3)

CALL PLOT(X(6),Y(6),2)-

ENDIF

IF (ILA.NE.0) THEN

C CALL FILL(X(3),Y(3),3)

CALL CIRCLE(X(3),Y(3),RAD,SF,0)

END IF

IF (LNTYP .GE.2) THEN

CALL PLOT(X(7),Y(7),3)

CALL. PLOT (X(3) ,Y (3),2)

IF (LNTYP .EQ.2) THEN

CALL SYMBOL(X(8) ,Y(8),HGTH,STR,DEGR,NC)

ENDIF

ENDIF

IF (LNTYP.EQ. 1) THEN

CALL SYI4EOL(X(9),Y(9),HGTH,STR,DEGR,NC)

CALL PLOT(X(3),Y(3),3)

CALL PLOT(X(12),Y(12),2)

ENDIF

IF (IHD.NE.0) THEN

CALL PLOT(X(11),Y(11),3)

CALL PLOT(X(15),Y(15),2)

ENDIF

IF (IRA.NE.0) THEN

C CALL FILL(X(12),Y(12),3)

CALL CIRCLE(X(12),Y(12),RAD,SF,0)

ENDIF

IF(LNTYP.GE.2) THEN

CALL PLOT(X(12),Y(12),3)

C50 Appendix C Program Source Codes

CALL PLOT(X(16) ,Y(16) ,2)

IF (LNTYP.EQ.3) THEN

CALL SYMBOL(X(17),Y(17),HGTH,STR,DEGR,NC)

ENDI F

ENDIF

RETURN

END

Appendix C Program Source CodesC5

SUBROUTINE FOOTS (DIM, STR,NC)

DIMENSION NFC(15)

CHARACTER*1 NUM(10)

CHARACTER*13 STR, BLI(

CHARACTER*5 FRACT(15)

DATA BLK/' '

DATA NUM;'0 1 2 '3 '4 ,5 6 ,7 8'I9 /

DATA FRP. /1/16', '1/8',' 3/16' ,'1/4' ,'5/16', '3/8', '7/16',

>'1/2' ,'9/16' , 5/8 , '11/16', '3/4', '13/16' ,'7/8',1'15/16' /

DATA NE'C/4, 3,4,3,4,3,4,3,6,3,5,3,5,3,5/

DIST=DIM+D. 002604167

STR=BLK

NC-0

DIV=1000 .0

DO 100 I=1,4

IF (DIST.LT.DIV.AND.NC.EQ.0)GO TO 90

NT-=DIST/DIV

NC-NC+l

STR (NC:NC)=NUM(NT+1)

DIST=DIST-NT*DIV

90 DIV-DIV/10.0

100 CONTINUE

IF (NC.GT.0) THEN

NC-NC+ 1

STR(NC:NC)-'-'

ENDIF

DIST=DIST*12 .0

DIV-10.0

DO 200 I=1,2

IF (DIST.LT.DIV.AND. I.EQ. 1)GO TO 190

NT-DIST/DIV

NC =NC+ I

STR(NC:NC)=NUM(NT+1)

DIST=DIST-NT*DIV

190 DIV=DIV/10.0

200 CONTINUE

N16-DIST/0 .0625

IF(NC.GT.0.AND.N16.GT.0)THEN

NC-'NC+1

STR(NC:NC)='

ENDIF

IF(N16.GT.0)THEN

NS-NC+1

NC-NC+NFC (N16)

STR(NS:NC) =FRACT (N16)

ENDIF

RETURN

END

C52 Appendix C Program Source Codes

Appendix D
Sample Program Output

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Site Specific Data REVISION # 0

SOILS INVESTIGATION and FOUNDATION DATA

cohesion (psf): 400.

unit weight (pcf): 120.

angle of internal friction (degrees): 25.0

diameter of boring for pole socket (inches): 12.0

CLIMATE DATA

average daily rainfall (inches): 0.10

average daily temperature (degs F): 50.0

wind speeds (mph): 10.0

sustained average (mph):

gust speeds (mph):

potential ice or snow load (psf): 2.0

GENERAL TERRAIN AND FOLIAGE CLASSIFICATION:

Appendix D Sample Program Output Dl

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Structure Geometry REVISION # 0

PLAN VIEW DATA

length of structure (feet): 25.0

bay spacings (measured along the structure length)

2 @ 12.5 @ @ @ @

width of structure (feet): 20.0

minimum pole spacing (feet): 5.0

ELEVATION DATA

exterior pole height (above ground feet): 10.0

exterior poles guyed (Y/N): Y

allowable netting sag (feet): 2.0

allowable displacement error (inches): 0.10

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Support Member Material Screen REVISION # 0

INDICATE DESIRED SUPPORT MEMBER TO BE USED (v-Ye N-'Io)

ALLOW MODULUS X-SECT MOMENT UNIT

LENGTH STRENGTH ELASTIC AREA INERTIA PRICE

MARK (FT) (KSI) (10**6) (SQIN) (IN**4) ($/FT) DESCRIPTION

N A0202P 20 30 10 1.75 .911 0 2 X 2 ALUMINUM

N A0303P 20 30 10 2.75 3.49 0 3 X 3 ALUMINUM

Y A0404P 20 50 29.0 6.36 12.35 0.80 4 X 4 ALUMINUM

N W0404P 20 7 1.7 16 85 0 4 X 4 WOODEN PO

D2 Appendix D Sample Program Output

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Netting Material Screen REVISION # 0

INDICATE DESIRED NETTING TYPE TO BE USED (Y-Yes N-No)

UNIT NETTING ALLOW UNIT DRAG UNIT

SIZE THICK STRENGTH WEIGHT COEFFIC PRICE

MARK (SOFT) (IN) (KSI) (#/SQFT) (UNITS) ($/SQFT) DESCRIPTION

N BFO16N 0 0 0 0 0 0 BRUNSWICK 16-LB

N BF022N 0 0 0 0 0 0 BRUNSWICK 22-LB

Y SF05ON 400.0 0.085 5.0 0.083 005 0.15 STANDARD DOD50

N TBO35N 0 0 0 0 0 0 TELEDYNE BROWN

N UL060N 0 0 0 0 0 0 ULCAN 60-LB NET

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Tension Member Material Screen REVISION # 0

INDICATE DESIRED TENSION MEMBER TO BE USED (Y-Yes N-No)

ALLOW MODULUS THERMAL X-SECTION UNIT UNIT

STRENGTH ELASTIC COEFFIC AREA WEIGHT PRICE

MARK (KIPS) (10**6) (10**-6) (SQIN) (#/FT) ($/FT) DESCRIPTION

N GR416C 0 0 0 0 0 0 1/4 INCH GRASS

N GS216C 16.0 29 6.5 .012 0.40 0 1/8 IN AIRCRAFT

Y GS316C 17.5 29 6.5 .785 0.45 0.70 3/16 IN AIRCRAFT

N GS416C 20.0 0 0 0 0 0 1/4 IN AIRCRAT

N GS516C 22.0 0 0 0 0 0 5/16 IN AIRCRAFT

N GS616C 2.4 0 0 0 0 0 3/8 IN AIRCRAFT

N GS816C 4.2 0 0 0 0 0 1/2 IN AIRCRAFT

N NL416C 0 0 0 0 0 0 1/4 INCH NYLON

Appendix D Sample Program Output D3

FIXED FACILITY SUPPORT SYSTEMS PROJECT # TRIAL

Anchor Material Screen REVISION # 0

INDICATE DESIRED ANCHOR TO BE USED (Y-Yes N-No)

ALLOW MODULUS ROD ANCHOR UNIT

LENGTH STRENGTH ELASTIC DIAMETER DIAMETER PRICE

MARK (INCH) (KIPS) (10**6) (INCH) (INCH) ($/EA) DESCRIPTION

N T0146A 66 58 29 1.25 10 32.8 1 1/4 X 66 10-I

N T0148A 96 58 29 1.25 10 39.6 1 1/4 X 96 10-I

Y T0816A 66 36 29 1.00 8.0 20.5 1 X 66 8-INCH T

N T2537A 96 58 29 1.25 14 59.6 1 1/4 X 96 14-1

N T4345A 54 23 29 .75 4 11.0 3/4 X 54 4-INCH

N T6346A 66 23 29 .75 6 13.7 3/4 X 66 6-INCH

D4 Appendix D Sample Program Output

PROJECT: TRIALO
REVISION: 0
PROG VER: 01.01
PROG NUM: 1

STRUCTURAL SYSTEM SUPPORT MEMBER DEFLECTIONS

SUPPORT TOP OF MEMBER DEFLECTION IN THE
MEMBER LENGTH DIMENSION WIDTH DIMENSION

NUMBER (INCHES) (INCHES)
1 0.290962 -0.054643
2 0.016011 -0.001484
3 0.015925 0.003361
4 0.291953 0.052228
5 0.002508 -0.129863
6 -0.001096 0.001685
7 -0.001061 -0.001879
8 0.002492 0.129701
9 -0.289936 -0.051855

10 -0.019525 -0.001472
11 -0.019035 0.001489
12 -0.291424 0.053115

Appendix D Sample Program Output D5

PROJECT: TRIALO

REVISION: 0

PROG VER: 01.01

PROG NUM: 1

STRUCTURAL SYSTEM TENSION MEMBER LENGTHS

MIN DISTANCE UNSTRESSED LENGTH

FROM TO (INCHES) (INCHES) CABLE TYPE

1 2 80.00 92.87 EXTERIOR WIDTH
2 3 80.00 92.87 EXTERIOR WIDTH
3 4 80.00 92.87 EXTERIOR WIDTH

5 6 80.00 92.87 INTERIOR WIDTH

6 7 80.00 92.87 INTERIOR WIDTH
7 8 80.00 92.87 INTERIOR WIDTH

9 10 80.00 92.87 EXTERIOR WIDTH

10 11 80.00 92.87 EXTERIOR WIDTH
11 12 80.00 92.87 EXTERIOR WIDTH

1 5 150.00 156.64 EXTERIOR LENGTH

5 9 150.00 156.64 EXTERIOR LENGTH

2 6 150.00 156.64 INTERIOR LENGTH

6 10 150.00 156.64 INTERIOR LENGTH

3 7 150.00 156.64 INTERIOR LENGTH

7 11 150.00 156.64 INTERIOR LENGTH

4 8 150.00 156.64 EXTERIOR LENGTH

8 12 150.00 156.64 EXTERIOR LENGTH

1 6 150.00 175.84 DIAGONAL

2 5 150.00 175.84 DIAGONAL
5 10 150.00 175.84 DIAGONAL

6 9 150.00 175.84 DIAGONAL

2 7 150.00 175.84 DIAGONAL

3 6 150.00 175.84 DIAGONAL
6 11 150.00 175.84 DIAGONAL
7 10 150.00 175.84 DIAGONAL

3 8 150.00 175.84 DIAGONAL
4 7 150.00 175.84 DIAGONAL

7 12 150.00 175.84 DIAGONAL

8 11 150.00 175.84 DIAGONAL

D6 Appendix D Sample Program Output

PROJECT: TRIALO
REVISION. 0

PROG VER: 01.01

PROG NUM: 1

STRUCTURAL SYSTEM TENSION MEMBER LENGTHS

MIN DISTANCE UNSTRESSED LENGTH
FROM TO (INCHES) (INCHES) CABLE TYPE

1 1 169.71 169.71 HORZ GUY

5 5 169.71 169.71 HORZ GUY

9 9 169.71 169.71 HORZ GUY

1 1 169.71 169.71 VERT GUY
2 2 169.71 169.71 VERT GUY

3 3 169.71 169.71 VERT GUY

4 4 169.71 169.71 VERT GUY

4 4 169.71 169.71 HORZ GUY
8 8 169.71 169.71 HORZ GUY

12 12 169.71 169.71 HORZ GUY
9 9 169.71 169.71 VERT GUY

10 10 169.71 169.71 VERT GUY

11 11 169.71 169.71 VERT GUY
12 12 169.71 169.71 VERT GUY

Appendix D Sample Program Output D7

PROJECT: TRIALO
REVISION: 0

PROG VER: 01.01

PROG NUM: 1

FOUNDATION/FOOTING SYSTEM DESIGN

LENGTH TO PREVENT OVERTURNING 4.000 FEET

MOMENT APPLIED 1847.966 FT-POUNDS
ALLOWABLE MOMENT 2145.840 FT-POUNDS

LATERAL FORCE APPLIED 184.797 POUNDS

ALLOWABLE LATERAL FORCE 1303.598 POUNDS

SELECTED ANCHORING SYSTEM DESIGN

DIAMETER DEPTH CAPACITY MAX LOAD MAX STRENGTH
(INCH) (INCH) (LBS) (LBS) (LBS)

8.00 66.00 2703.1 219.2 36000.0

STRUCTURAL MATERIALS SUMMARY

QUANTITY MARK USE DESCRIPTION UNIT COST TOTAL COST

12. A0404 P 4 X 4 ALUMINUM 0.80 192.00

64. SF050 N STANDARD DOD 50 0.15 3840.00
4200. GS316 C 3/16 IN AIRCRAF 0.70 2940.00

2376. GS316 C 3/16 IN AIRCRAF 0.70 1663.20

14. T0816 A 1 X 66 8-INCH T 20.50 287.00

NOTE: 1 CUT(S) REQUIRED ON EACH SUPPORT MEMBER

NETTING OVERHANG IS ONE-HALF STRUCTURE HEIGHT

ON ALL SIDES
NETTING OVERLAP IS 5.0 PERCENT ON ALL SIDES

D8 Appendix D Sample Program Output

Waterways Experiment Station Cataloging-in-Publication Data

Epps, James W.
Design of fixed-facility multispectral camouflage netting support sys-

tems / by James W. Epps, Marion W. Corey ; prepared for Department of
the Army, US Army Corps of Engineers ; monitored by Environmental
Laboratory, US Army Engineer Waterways Experiment Station.
236 p. : ill. ; 28 cm. - (Technical report ; EL-92-34)
Includes bibliographical references.
1. Camouflage (Military science) 2. Anchorage (Structural engineer-

ing) 3. Foundations - Military aspects. I. Corey, Marion W. II. United
States. Army. Corps of Engineers. Ill. US Army Engineer Waterways
Experiment Station. IV. Title. V. Series: Technical report (US Army En-
gineer Waterways Experiment Station) ; EL-92-34.
TA7 W34 no.EL-92-34

